de-Broglie's dual theory of light	Einstein's quantum theory	Maxwell's EM wave theory	Huygen's wave theory	Newtons corpuscular theory
(i) Light propagates both as particles as well as waves	(i) Light is produced, absorbed and propagated as packets of energy called photons	(i) Light travels in the form of EM waves with speed in free $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ space	(i) Light travels in a hypothetical medium ether (high elasticity very low density) as waves	(i) Based on Rectilinear propagation of light
(ii) Wave nature of light dominates when light interacts with light. The particle nature of light dominates when the light interacts with matter (micro-scopic particles)	(ii) Energy associated with each photon $E = hv = \frac{hc}{\lambda}$ $h = \text{planks constant}$ $= 6.6 \times 10^{-34} \text{J} - \text{sec}$ $v = \text{frequency}$ $\lambda = \text{wavelength}$	(ii) EM waves consists of electric and magnetic field oscillation and they do not require material medium to travel	(ii) He proposed that light waves are of longitudinal nature. Later on it was found that they are transverse	(ii) Light propagates in the form of tiny particles called Corpuscles.Colour of light is due to different size of corpuscles

Wave Optics

Light Propagation

Light is a form of energy which generally gives the sensation of sight.

(1) Different theories

(2) Optical phenomena explained ($\sqrt{}$) or not explained (\times) by the different theories of light

				Theory	Phenomena	S. No.
Dual	Quantum	E.M. wave	Wave	Corpuscular		
\checkmark	\checkmark	V	\checkmark	\checkmark	Rectilinear Propagation	(i)
	\checkmark	\checkmark	\checkmark	\checkmark	Reflection	(ii)
	\checkmark	\checkmark	\checkmark	\checkmark	Refraction	(iii)
\checkmark	×	\checkmark	\checkmark	×	Dispersion	(iv)
\checkmark	×	\checkmark	\checkmark	×	Interference	(v)
	×	\checkmark	\checkmark	×	Diffraction	(vi)
	×	\checkmark	\checkmark	×	Polarisation	(vii)
\checkmark	×	\checkmark	\checkmark	×	Double refraction	(viii)
V	×	\checkmark	\checkmark	×	Doppler's effect	(ix)
1	\checkmark	×	×	×	Photoelectric effect	(x)

(3) Wave front

- (i) Suggested by Huygens
- (ii) The locus of all particles in a medium, vibrating in the same phase is called Wave Front (WF)
- (iii) The direction of propagation of light (ray of light) is perpendicular to the WF.
- (iv) Types of wave front

(v) Every point on the given wave front acts as a source of new disturbance called secondary wavelets. Which travel in all directions with the velocity of light in the medium.

A surface touching these secondary wavelets tangentially in the forward direction at any instant gives the new wave front at that instant. This is called secondary wave front

 \underline{Note} : \Box Wave front always travels in the forward direction of the medium.

Light rays is always normal to the wave front.

□ The phase difference between various particles on the wave front is zero.

Principle of Super Position

When two or more than two waves superimpose over each other at a common particle of the medium then the resultant displacement (y) of the particle is equal to the vector sum of the displacements (y_1 and y_2) produced by individual waves. *i.e.* $\vec{y} = \vec{y}_1 + \vec{y}_2$

(1) Graphical view :

(2) Phase / Phase difference / Path difference / Time difference

(i) Phase : The argument of sine or cosine in the expression for displacement of a wave is defined as the phase. For displacement $y = a \sin \omega t$; term ωt = phase or instantaneous phase

(ii) Phase difference (ϕ): The difference between the phases of two waves at a point is called phase difference *i.e.* if $y_1 = a_1 \sin \omega t$ and $y_2 = a_2 \sin (\omega t + \phi)$ so phase difference = ϕ

(iii) Path difference (Δ) : The difference in path length's of two waves meeting at a point is called path

$$\Delta = \frac{\lambda}{2\pi} \times \phi$$

difference between the waves at that point. Also

$$T.D.=\frac{T}{2\pi}\times\phi$$

(iv) Time difference (*T.D.*) : Time difference between the waves meeting at a point is

(3) Resultant amplitude and intensity

If suppose we have two waves $y_1 = a_1 \sin \omega t_{\text{and}} y_2 = a_2 \sin(\omega t + \phi)$; where $a_1, a_2 =$ Individual amplitudes, $\phi =$ Phase difference between the waves at an instant when they are meeting a point. $I_1, I_2 =$ Intensities of individual waves

Resultant amplitude : After superimposition of the given waves resultant amplitude (or the amplitude of resultant wave) is given by $\mathbf{A} = \sqrt{\mathbf{a_1}^2 + \mathbf{a_2}^2 + 2\mathbf{a_1}\mathbf{a_2}\mathbf{cosp}}$

Resultant intensity : As we know intensity \propto (Amplitude)² \Rightarrow $I_1 = ka_1^2$, $I_2 = ka_2^2$ and $I = kA^2$ (k is a proportionality constant). Hence from the formula of resultant amplitude, we get the following formula of resultant intensity $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\phi$

The term $2\sqrt{l_1 l_2} \cos \phi$ is called interference term. For incoherent interference this term is Note : 🗆 zero so resultant intensity $I = I_1 + I_2$

(4) Coherent sources

The sources of light which emits continuous light waves of the same wavelength, same frequency and in same phase or having a constant phase difference are called coherent sources.

Two coherent sources are produced from a single source of light by adopting any one of the following two methods

Division of amplitude	Division of wave front	
Light sources is extended. Light wave partly reflected (50%) and partly transmitted (50%)	The light source is narrow	
The amplitude of wave emitted by an extend source of light is divided in two parts by partial reflection and partial refraction.	The wave front emitted by a narrow source is divided in two parts by reflection of refraction.	
The coherent sources obtained are real <i>e.g.</i> Newtons rings, Michelson's interferrometer colours in thin films	The coherent sources obtained are imaginary <i>e.g.</i> Fresnel's biprism, Llyod's mirror Youngs' double slit <i>etc.</i>	

Note : Laser light is highly coherent and monochromatic.

- Two sources of light, whose frequencies are not same and phase difference between the waves emitted by them does not remain constant w.r.t. time are called non-coherent.
- □ The light emitted by two independent sources (candles, bulbs *etc.*) is non-coherent and interference phenomenon cannot be produced by such two sources.
- □ The average time interval in which a photon or a wave packet is emitted from an atom is defined as

 $\tau_c = \frac{L}{c} = \frac{\text{Distancefcoherenc}}{\text{Velocityoflight}}$, it's value is of the order of 10^{-10} sec. the time of coherence. It is

Interference of Light

When two waves of exactly same frequency (coming from two coherent sources) travels in a medium, in the same direction simultaneously then due to their superposition, at some points intensity of light is maximum while at some other points intensity is minimum. This phenomenon is called Interference of light.

(1) **Types :** It is of following two types

Destructive interference	Constructive interference	
(i) When the wave meets a point with opposite phase, destructive interference is obtained at that point (<i>i.e.</i> minimum light)	(i) When the waves meets a point with same phase, constructive interference is obtained at that point (<i>i.e.</i> maximum light)	

(ii) $\phi = 180^{\circ} \operatorname{or}(2n-1)\pi$; $n = 1, 2,$ or $(2n+1)\pi$; $n = 0,1,2$	(ii) Phase difference between the waves at the point of observation $\phi = 0^{\circ} \text{ or } 2n\pi$
(iii) $\Delta = (2n-1)\frac{\lambda}{2}$ (<i>i.e.</i> odd multiple of $\lambda/2$)	(iii) Path difference between the waves at the point of observation $\Delta = n\lambda$ (<i>i.e.</i> even multiple of $\lambda/2$)
(iv) Resultant amplitude at the point of observation will be minimum	(iv) Resultant amplitude at the point of observation will be maximum
$A_{min} = a_1 - a_2$	$a_1 = a_2 \Rightarrow A_{\min} = 0$
If $a_1 = a_2 \implies A_{\min} = 0$	If
(v) Resultant intensity at the point of observation will be minimum	(v) Resultant intensity at the point of observation will be maximum
$I_{\min} = I_1 + I_2 - 2\sqrt{I_1I_2}$	$I_{\max} = I_1 + I_2 + 2\sqrt{I_1I_2}$
$I_{\min} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$	$I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$

If

(2) Resultant intensity due to two identical waves :

For two coherent sources the resultant intensity is given by $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$

For identical source
$$I_1 = I_2 = I_0 \implies I = I_0 + I_0 + 2\sqrt{I_0 I_0} \cos \phi = 4I_0 \cos^2 \frac{\phi}{2}$$
 [1 + cos θ

]

 a_1

If $I_1 = I_2 = I_0 \Rightarrow I_{\min} = 0$

Note : In interference redistribution of energy takes place in the form of maxima and minima.

Average intensity :
$$I_{av} = \frac{I_{max} + I_{min}}{2} = I_1 + I_2 = a_1^2 + a_2^2$$

Q Ratio of maximum and minimum intensities :

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}}\right)^2 = \left(\frac{\sqrt{I_1/I_2} + 1}{\sqrt{I_1/I_2} - 1}\right)^2 = \left(\frac{a_1 + a_2}{a_1 - a_2}\right)^2 = \left(\frac{a_1/a_2 + 1}{a_1/a_2 - 1}\right)^2 \text{ also}$$

$$= \left(\frac{\sqrt{I_{\text{max}}} + 1}{\sqrt{I_{\text{min}}} - 1}\right)$$
If two waves having equal intensity $(I_1 = I_2 = I_0)$ meets at two locations *P* and *P*.

If two waves having equal intensity $(I_1 = I_2 = I_0)$ meets at two locations *P* and *Q* with path difference Δ_1 and Δ_2 respectively then the ratio of resultant intensity at point *P* and *Q* will be

$$\frac{I_{P}}{I_{Q}} = \frac{\cos^{2}\frac{\phi_{1}}{2}}{\cos^{2}\frac{\phi_{2}}{2}} = \frac{\cos^{2}\left(\frac{\pi\Delta_{1}}{\lambda}\right)}{\cos^{2}\left(\frac{\pi\Delta_{2}}{\lambda}\right)}$$

Young's Double Slit Experiment (YDSE)

Monochromatic light (single wavelength) falls on two narrow slits S_1 and S_2 which are very close together acts as two coherent sources, when waves coming from two coherent sources (S_1, S_2) superimposes on each other, an

interference pattern is obtained on the screen. In YDSE alternate bright and dark bands obtained on the screen. These bands are called Fringes.

(3) If the slit widths are unequal, the minima will not be complete tark. For very large width uniform illumination occurs.

(4) If one slit is illuminated with red light and the other slit is illuminated with blue light, no interference pattern is observed on the screen.

(5) If the two coherent sources consist of object and it's reflected image, the central fringe is dark instead of bright one.

(6) Path difference

Path difference between the interfering waves meeting at a point P on the screen

is given by $\Delta = \frac{xd}{D} = d\sin\theta$

where x is the position of point P from central maxima.

For maxima at *P*: $\Delta = n\lambda$; where $n = 0, \pm 1, \pm 2, \dots$

and For minima at P:

 $\Delta = \frac{(2n-1)\lambda}{2}; \text{ where } n = \pm 1, \pm 2, \dots$

5	and the second	
3		χ.
		Scores,

Note : \Box If the slits are vertical, the path difference (Δ) is $d \sin \theta$, so as θ increases, Δ also increases. But if slits are horizontal path difference is $d \cos \theta$, so as θ increases, Δ decreases.

$$\lambda_{w} = \frac{\lambda_{a}}{\mu_{w}} \Longrightarrow \beta_{w} = \frac{\beta_{a}}{\mu_{w}} = \frac{3}{4}\beta_{a}$$

e.g. in water

(iii) Fringe width $\beta \propto \frac{1}{d}$ *i.e.* with increase in separation between the sources, β decreases.

(iv) Position of n^{th} bright fringe from central maxima $\mathbf{x}_n = \frac{n\lambda \mathbf{D}}{\mathbf{d}} = n\beta$; n = 0, 1, 2...

(v) Position of n^{th} dark fringe from central maxima $\mathbf{x}_n = \frac{(2n-1)\lambda D}{2d} = \frac{(2n-1)\beta}{2}; n = 1, 2, 3...$

(vi) In YDSE, if n_1 fringes are visible in a field of view with light of wavelength λ_1 , while n_2 with light of wavelength λ_2 in the same field, then $n_1\lambda_1 = n_2\lambda_2$.

(vii) Separation (Δx) between fringes

Between n^{th} bright and m^{th} dark fringe	Between n^{th} bright and m^{th} bright fringes $(n > m)$
(a) If $n > m$ then $\Delta x = \left(n - m + \frac{1}{2}\right)\beta$ (b) If $n < m$ then $\Delta x = \left(m - n - \frac{1}{2}\right)\beta$	$\Delta x = (n - m)\beta$

(8) Identification of central bright fringe

To identify central bright fringe, monochromatic light is replaced by white light. Due to overlapping central maxima will be white with red edges. On the other side of it we shall get a few coloured band and then uniform illumination.

(9) Condition for observing sustained interference

(i) The initial phase difference between the interfering waves must remain constant : Otherwise the interference will not be sustained.

(ii) The frequency and wavelengths of two waves should be equal : If not the phase difference will not remain constant and so the interference will not be sustained.

(iii) The light must be monochromatic : This eliminates overlapping of patterns as each wavelength corresponds to one interference pattern.

(iv) The amplitudes of the waves must be equal : This improves contrast with $I_{max} = 4I_0$ and $I_{min} = 0$.

(v) The sources must be close to each other : Otherwise due to small fringe width $\begin{pmatrix} \beta \propto \frac{1}{d} \end{pmatrix}$ the eye can not resolve fringes resulting in uniform illumination.

(10) Shifting of fringe pattern in YDSE

If a transparent thin film of mica or glass is put in the path of one of the waves, then the whole fringe pattern gets shifted.

If film is put in the path of upper wave, fringe pattern shifts upward and if film is placed in the path of lower wave, pattern shift downward.

Fringeshift=
$$\frac{D}{d}(\mu-1)t = \frac{\beta}{\lambda}(\mu-1)t$$

If shift is equivalent to *n* fringes then

$$\Rightarrow$$
 Additional path difference = $(\mu - 1)t$

$$n = \frac{(\mu - 1)t}{\lambda}$$
 or $t = \frac{n\lambda}{(\mu - 1)}$

- Shift is independent of the order of fringe (*i.e.* shift of zero order maxima = shift of n^{th} order maxima.
- \Rightarrow Shift is independent of wavelength.

Illustrations of Interference

Interference effects are commonly observed in thin films when their thickness is comparable to wavelength of incident light (If it is too thin as compared to wavelength of light it appears dark and if it is too thick, this will result in uniform illumination of film). Thin layer of oil on water surface and soap bubbles shows various colours in white light due to interference of waves reflected from the two surfaces of the film.

(1) **Thin films :** In thin films interference takes place between the waves reflected from it's two surfaces and waves refracted through it.

Interference in refracted light	Interference in reflected light
Condition of constructive interference (maximum intensity)	Condition of constructive interference (maximum intensity)
$\Delta = 2\mu t \cos r = (2n)\frac{\lambda}{2}$	$\Delta = 2\mu \ t\cos r = (2n \pm 1)\frac{\lambda}{2}$
For normal incidence	For normal incidence $r = 0$
$2\mu t = n\lambda$	so $2\mu t = (2n \pm 1) \frac{\lambda}{2}$
Condition of destructive interference (minimum intensity)	Condition of destructive interference (minimum intensity)
$\Delta = 2\mu t \cos r = (2n \pm 1)\frac{\lambda}{2}$	$\Delta = 2\mu t \cos r = (2n)\frac{\lambda}{2}$
For normal incidence $2\mu t = (2n \pm 1)\frac{\lambda}{2}$	For normal incidence $2\mu t = n\lambda$

Doppler's Effect in Light

The phenomenon of apparent change in frequency (or wavelength) of the light due to relative motion between the source of light and the observer is called Doppler's effect.

If v = actual frequency, v' = Apparent frequency, v = speed of source w.r.t stationary observer, c = speed of light

Source of light moves away from the stationary	Source of light moves towards the stationary observer
observer (v << c)	$(v \ll c)$
(i) Apparent frequency $v' = v \left(1 - \frac{v}{c}\right)$ and	(i) Apparent frequency $v' = v \left(1 + \frac{v}{c}\right)$ and
Apparent wavelength $\lambda' = \lambda \left(1 + \frac{\mathbf{V}}{\mathbf{C}} \right)$	$\lambda' = \lambda \left(1 - \frac{\mathbf{v}}{\mathbf{c}} \right)$
(ii) Doppler's shift : Apparent wavelength > actual	(ii) Doppler's shift : Apparent wavelength < actual wavelength,
wavelength,	So spectrum of the radiation from the source of light shifts
So spectrum of the radiation from the source of light shifts	towards the red end of spectrum. This is called Red shift
towards the violet end of spectrum. This is called Violet shift	$\Delta \lambda = \lambda \frac{V}{V}$
$\Delta \lambda = \lambda . \frac{V}{V}$	Doppler's shift c
Doppler's shift c	

 $\Delta \lambda = \frac{\lambda}{c} \times \frac{2\pi r}{T} \cdot r =$

Note : \Box Doppler's shift $(\Delta \lambda)$ and time period of rotation (*T*) of a star relates as radius of star.

Applications of Doppler effect

(i) Determination of speed of moving bodies (aeroplane, submarine etc) in RADAR and SONAR.

(ii) Determination of the velocities of stars and galaxies by spectral shift.

(iii) Determination of rotational motion of sun.

(iv) Explanation of width of spectral lines.

(v) Tracking of satellites. (vi) In medical sciences in echo cardiogram, sonography etc.

	$\frac{I_{\max}}{I_{\min}} = \left(\frac{\sqrt{\frac{I_1}{I_2}}}{\sqrt{\frac{I_1}{I_1}}}\right)$	$\left \frac{\frac{1}{2} + 1}{\frac{1}{2} - 1}\right ^2 = \left(\frac{\sqrt{\frac{4}{1}} + 1}{\sqrt{\frac{4}{1}} - 1}\right)^2 = \frac{9}{1}$) - -		
Solution: (a)	By using				
Example: 2	In Young's double slit 5461 Å) is used, how ma	experiment using sodium in ny fringes will be seen	light ($\Box = 5898Å$), 9 [RPET 1996]	2 fringes are seen. If given color ; JIPMER 2001, 2002]	ur (□ =
	(a) 62	(b) 67	(c) 85	(d) 99	
Solution: (d)	By using $n_1\lambda_1 = n_2\lambda_2$	\square 92×5898= n_2 ×546	$n_1 = n_2 = 99$		
Example: 3	Two beams of light ha	ving intensities <i>I</i> and 4 <i>I</i> i	nterfere to produce a	a fringe pattern on a screen. The	e phase
	difference between the intensities at A and B is 2001]	beams is $\frac{\pi}{2}$ at point A a	and \Box at point <i>B</i> . The second sec	then the difference between the re [IIT-JEE (So	esultant creening)
	(a) 21	(0) 4/	(c) 51	(u) /1	
Solution: (b)	By using $I = I_1 + I_2 +$	$2\sqrt{I_1I_2}\cos\phi$			
	At point A : Resultant inter	$I_A = I + 4I + 2\sqrt{I \times 4}$	$\overline{41}\cos\frac{\pi}{2}=51$		
	At point B : Resultant inter	nsity $I_B = I + 4I + 2\sqrt{I \times 4}$	\overline{H} COS $\pi = I$. Hence t	the difference $= I_A - I_B = 4I$	
Example: 4	If two waves represented wave will be about (a) 7	by $y_1 = 4 \sin \omega t$ and $y_2 = 4 \sin \omega t$ (b) 6	$3\sin\left(\omega t + \frac{\pi}{3}\right)$ interfection (c) 5	ere at a point, the amplitude of the [M (d) 3.	esulting IP PMT 2000
Solution: (b)	By using $A = \sqrt{a_1^2 + a_2^2}$	$\frac{1}{2} + 2a_1a_2\cos\phi \qquad A = 1$	$(4)^2 + (3)^2 + 2 \times 4 >$	$< 3\cos\frac{\pi}{3} = \sqrt{37} \approx 6$	
Example: 5	Two waves being prod	uced by two sources S_1	and ^{S2} . Both source	es have zero phase difference ar	nd have
	wavelength □. The des	tructive interference of bo	oth the waves will o	ccur of point P if $(S_1P - S_2P)$	has the
	value				
				[MP P]	ET 1987]
		$\frac{3}{2}\lambda$		$\frac{11}{\lambda}$	
	(a) 5	(b) 4	(c) 2□	(d) 2	
Solution: (d)	For destructive interfere $\Box/2$. Hence option (d) is	ence, path difference the w	aves meeting at P (i.	$e_{\rm e} S_1 P - S_2 P$) must be odd mul	tiple of
Example: 6	Two interfering wave (intensity at this point wi	having intensities are 9 <i>I</i> a ll be	nd 4 <i>I</i>) path differend	ce between them is 11 \square . The re	esultant
	(a) <i>I</i>	(b) 9 <i>I</i>	(c) 4 <i>I</i>	(d) 25 <i>I</i>	
Solution: (d)	Path difference $\Delta = \frac{\lambda}{2\pi}$	$- \times \phi \qquad \qquad \frac{2\pi}{\lambda} \times 11\lambda = 22\pi$	<i>i.e.</i> constructive inter	rference obtained at the same poir	nt
	So, resultant intensity 1	$_{R} = (\sqrt{I_{1}} + \sqrt{I_{2}})^{2} = (\sqrt{9I})^{2}$	$(+\sqrt{4I})^2 = 25I$		
	$\frac{I_{\text{max}}}{I_{\text{max}}}$	$=\frac{144}{21}$			
Example: 7	In interference if I_{\min}	then what will be the	he ratio of amplitudes	s of the interfering wave	
	144	7	1	12	
	(a) 81	(b) 1	(c) 7	(d) 9	

Solution: (b)	$\frac{a_1}{a_2} = \left(\frac{\sqrt{\frac{I_{\text{max}}}{I_{\text{min}}}} + \frac{1}{\sqrt{\frac{I_{\text{max}}}{I_{\text{min}}}}}}{\sqrt{\frac{I_{\text{max}}}{I_{\text{min}}}} - \frac{1}{\sqrt{\frac{I_{\text{max}}}{I_{\text{min}}}}}}\right)$	$\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \left(\frac{\sqrt{\frac{144}{81}} + 1}{\sqrt{\frac{144}{81}} - 1}\right) = \left(\frac{\frac{12}{9}}{\frac{12}{5}}\right)$	$\left(\frac{1}{-1}\right) = \frac{7}{1}$	
Example: 8	Two interfering waves hav	ing intensities r and v me	eets a point with time differ	where $3T/2$ What will be the
Liumpier o	resultant intensity at that po	int	tets a point with time and	chee 31/2. What will be the
				X + V
	(a) $(\sqrt{x} + \sqrt{y})$	(b) $(\sqrt{x} + \sqrt{y} + \sqrt{xy})$	(c) $x+y+2\sqrt{xy}$	$\frac{1}{2xy}$
	T	3T T		(u)
<i>Solution</i> : (c)	Time difference T.D. = $\frac{1}{2\pi}$	$ \times \phi \qquad \frac{3}{2} = \frac{1}{2\pi} \times \phi \qquad \phi$	$= 3\pi$; This is the condition of	of constructive interference.
	So resultant intensity $I_R =$	$(\sqrt{I_1} + \sqrt{I_2})^2 = (\sqrt{x} + \sqrt{y})^2$	$\overline{y}^2 = x + y + 2\sqrt{xy}.$	
Example: 9	In Young's double-slit expe	riment, an interference pat	tern is obtained on a screen l	by a light of wavelength 6000
	Å, coming from the coheren	nt sources S_1 and S_2 . At	certain point P on the scree	n third dark fringe is formed.
	Then the path difference S_1	$P - S_2 P_{\text{in microns is}}$		FAMCET 20031
	(a) 0.75	(b) 1.5	(c) 3.0	(d) 4.5
<i>Solution</i> : (b)	For dark fringe path different	$\Delta = (2n-1) - \frac{1}{2};$ here n	$n = 3$ and $\Box = 6000 \Box 10^{-10} n$	1
	$\Delta = (2 \times 3 - 1) \times \frac{6 \times 10}{2}$	$-7 = 15 \times 10^{-7} m = 1.5 m$	icrons	
Example: 10	In a Young's double slit exper-	riment, the slit separation is 1	1 mm and the screen is $1 m$ from	m the slit. For a monochromatic
	light of wavelength 500 nm , th	e distance of 3rd minima from	n the central maxima is	[Orissa JEE 2003]
	(a) 0.50 mm	(b) 1.25 mm	(c) $1.50 mm$	(d) $1.75 mm$
Solution: (b)	Distance of <i>u</i> th minima from	a control movimo is givon o	$X = \frac{(21-1)\hbar D}{2d}$	
<i>Solution</i> . (0)	(2, 2, 1)	n central maxima is given a	15 20	
	$X = \frac{(2 \times 3 - 1) \times 5}{2 \times 1}$	$\frac{00\times10^{-5}\times1}{0^{-3}} = 1.25mm$		
	So here 2×1	0 -	-	
Example: 11	The two slits at a distance of observed on a screen placed at	1 <i>mm</i> are illuminated by the a distance of 1 <i>m</i> . The distance	light of wavelength 6.5×10^{-1} ce between third dark fringe and	<i>m</i> . The interference fringes are fifth bright fringe will be CERT 1982: MP PET 1995: BVP 2003
	(a) 0.65 <i>mm</i>	(b) 1.63 <i>mm</i>	(c) 3.25 mm	(d) 4.88 mm
			(1	$(1)\lambda D$
Solution: (b)	Distance between n^{th} bright	and m^{th} dark fringe $(n > m)$) is given as $x = \left(n - m + \frac{1}{2}\right)$	$\beta = \left(n - m + \frac{1}{2} \right) - \frac{1}{d}$
	$x = \left(5 - 3 + \frac{1}{2}\right) \times \frac{6.5 \times 1}{1 \times 1}$	$\frac{10^{-7} \times 1}{10^{-3}} = 1.63mm$		
Example: 12	The slits in a Young's double The intensity at the central frim	slit experiment have equal winges is I_0 . If one of the slits is of	idths and the source is placed sy closed, the intensity at this point	will be [MP PMT 1999]
	(a) I_0	(b) $I_0/4$	(c) $I_0/2$	(d) $4l_0$
Solution: (b)	$I_R = 4I\cos^2\frac{\phi}{2}$ By using $I_R = 4I\cos^2\frac{\phi}{2}$ At central position $\Box = 0^\circ$, I	{where $I =$ Intensity of each nence initially $I_0 = 4I$.	ch wave}	
	If one slit is closed, no int	erference takes place so in	ntensity at the same location	n will be I only i.e. intensity
	become $s \frac{1}{4} th_{or} \frac{I_0}{4}$.			

Wave Motion 11

Example: 13 In double sit experiment, the angular width of the fringes is 0.20° for the sodium light (1 = 5800 Å) in order to increase the angular width of the fringes by (16%), the mecassory change in the wavelength is [MP PWT 1997]
(a) Increase of 589 Å (b) Decrease of 589 Å (c) Increase of 6479 Å (d) Zero
Solution: (a)
$$B_{2} = \frac{k}{A_{0}} = \frac{b_{1}}{b_{2}} = \frac{k_{1}}{A_{2}} = \frac{0.20^{\circ}}{(0.20^{\circ} + 10^{\circ} 60.20)} = \frac{5800}{A_{2}} = \frac{0.22}{0.22} = \frac{5800}{A_{2}} = \frac{1}{A_{2}} = 6479$$

So increase in wavelength = 6479 – 5890 – 589 Å. In I Young's experiment, light of wavelength 400 Å is used, and fringes are formed at 2 metre distance and has a fringe width of 0.6 mm. If whole of the experiment is performed in a laquid of refractive index 1.5, then width of fringe will be [MP EWT 1994, 97]
(a) 0.2 mm (b) 0.3 mm (c) 0.4 mm (d) 1.2 mm
B meetiane $\frac{B_{20}}{M} = \frac{B_{20}}{A_{1}} = \frac{B_{20}}{A_{1}} = 0.4$ mm?
Example: 15 Two identical sources emitted waves which produces intensity of k unit at a point on screen where path difference is 1.4 Mar will be intensity at a point on screen at which path difference is 1.4 [RPET 1994, 97]
(a) 0.2 mm (b) 2 (c) k (d) Zero
By using phase difference $\phi = \frac{2\pi}{\lambda} (\Delta)$
For path difference \Box , phase difference $\phi = \frac{2\pi}{\lambda} (\Delta)$
For path difference \Box , phase difference $\phi = \frac{2\pi}{\lambda} (\Delta)$
For path difference \Box , phase difference $\phi = \frac{2\pi}{\lambda} (\Delta)$
For path difference \Box , phase difference $\phi = \frac{2\pi}{\lambda} (\Delta)$
For path difference \Box , phase difference $\phi = \frac{2\pi}{\lambda} (\Delta)$
For path difference \Box , phase difference $(-1, 1, 2, -1)$
(a) 2 fringes upward (b) 2 fringes downward (c) 10 fringes upward. In the path of the first wave. The wavelength of the wave used is 60004. The central bright maximum will shift (c) = 1.5) is introduced in the path of one of the wave and another plates is introduced in the path of the (-1 = 1.8) other wave. The central fringes upward (c) 10 fringes upward. In a 12352 fringes are observed by using light of wavelength 4400 Å, if a glass plate

A star is moving towards the earth with a speed of $4.5 \times 10^6 m/s$. If the true wavelength of a certain line in the Example: 23 spectrum received from the star is 5890 Å, its apparent wavelength will be about $[c = 3 \times 10^8 m/s]$ [MP PMT 1999] (a) 5890 Å (b) 5978 Å (c) 5802 Å (d) 5896 Å $\lambda' = \lambda \left(1 - \frac{\nu}{c} \right) \qquad \lambda' = 5890 \left(1 - \frac{4.5 \times 10^6}{3 \times 10^8} \right) = 5802 \text{\AA}$ Solution: (c) By using Light coming from a star is observed to have a wavelength of 3737 Å, while its real wavelength is 3700 Å. The Example: 24 speed of the star relative to the earth is [Speed of light $= 3 \times 10^8 m/s$] [MP PET 1997] (a) $3 \times 10^5 m/s$ (b) $3 \times 10^6 m/s$ (c) $3.7 \times 10^7 m/s$ (d) $3.7 \times 10^6 m/s$ By using $\Delta \lambda = \lambda \frac{v}{c} = (3737-3700) = \frac{3700 \times \frac{v}{3 \times 10^8}}{3 \times 10^8} = v = 3 \times 10^6 m/s$ Solution: (b) Light from the constellation Virgo is observed to increase in wavelength by 0.4%. With respect to Earth the Example: 25 [MP PMT 1994, 97; MP PET 2003] constellation is (a) Moving away with velocity $1.2 \times 10^6 m/s$ (b) Coming closer with velocity $1.2 \times 10^6 m/s$ (c) Moving away with velocity $4 \times 10^6 m/s$ (d) Coming closer with velocity $4 \times 10^6 m/s$ By using $\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$; where $\frac{\Delta\lambda}{\lambda} = \frac{0.4}{100}$ and $c = 3 \square 10^8 \text{ m/s} \square \frac{0.4}{100} = \frac{v}{3 \times 10^8}$ $\square v = 1.2 \square 10^6 \text{ m/s}$ Solution: (a) Since wavelength is increasing *i.e.* it is moving away Tricky example: 1 In YDSE, distance between the slits is $2 \Box 10^{-3}$ m, slits are illuminated by a light of wavelength 2000Å –9000 Å. In the field of view at a distance of 10^{-3} m from the central position which wavelength will be observe. Given distance between slits and screen is 2.5 m (a) 40000 Å (c) 5000 Å (d) 5500 Å $x = \frac{n\lambda D}{d} \quad \lambda = \frac{xd}{nD} = \frac{10^{-3} \times 2 \times 10^{-3}}{n \times 2.5} \Rightarrow \frac{8 \times 10^{-7}}{n} m = \frac{8000}{n} \text{\AA}$ Solution : (b) For n = 1, 2, 3... $\square = 8000$ Å, 4000 Å, $\frac{8000}{3}$ Å.... Hence only option (a) is correct. Tricky example: 2 I is the intensity due to a source of light at any point P on the screen. If light reaches the point P via two different paths (a) direct (b) after reflection from a plane mirror then path difference between two paths is $3\Box/2$, the intensity at *P* is (a) *I* (b) Zero (c) 2*I* (d) 4*I* Solution : (d) Reflection of light from plane mirror gives additional path difference of $\Box/2$ between two waves $\Box \text{ Total path difference} = \frac{3\lambda}{2} + \frac{\lambda}{2} = 2\lambda$ Which satisfies the condition of maxima. Resultant intensity $=(\sqrt{I} + \sqrt{I})^2 = 4I$. Tricky example: 3 A ray of light of intensity I is incident on a parallel glass-slab at a point A as shown in figure. It undergoes

partial reflection and refraction. At each reflection 25% of incident energy is reflected. The rays *AB* and *A* \square *B* \square undergo interference. The ratio I_{max}/I_{min} is [IIT-JEE 1990] (a) 4 : 1 (b) 8 : 1 (c) 7 : 1 (d) 49 : 1 Solution : (d) From figure $I_1 = \frac{I}{4}_{and} I_2 = \frac{9I}{64}_{\square} = \frac{I_2}{I_1} = \frac{9}{16}$ $\frac{I_{max}}{I_{min}} = \left(\frac{\sqrt{\frac{I_2}{I_1}} + 1}{\sqrt{\frac{I_2}{I_1}} - 1}\right) = \left(\frac{\sqrt{\frac{9}{16}} + 1}{\sqrt{\frac{9}{16}} - 1}\right) = \frac{49}{1}$

Fresnel's Biprism

(1) It is an optical device of producing interference of light Fresnel's biprism is made by joining base to base two thin prism (A_1BC and A_2BC as shown in the figure) of very small angle or by grinding a thick glass plate.

(2) Acute angle of prism is about $1/2^{\circ}$ and obtuse angle of prism is about 179° .

(3) When a monochromatic light source is kept in front of biprism two coherent virtual source S_1 and S_2 are produced.

(4) Interference fringes are found on the screen (in the MN region) placed behind the biprism interference fringes are formed in the limited region which can be observed with the help eye piece.

(5) Fringe width is measured by a micrometer attached to the eye piece. Fringes are of equal width and its value is $\beta = \frac{\lambda D}{d} \Rightarrow \lambda = \frac{\beta d}{D}$

Let the separation between S_1 and S_2 be d and the distance of slits and the screen from the biprism be a and b respectively *i.e.* D = (a + b). If angle of prism is α and refractive index is μ then $d = 2\partial(\mu - 1)\alpha$

$$\lambda = \frac{\beta \left[2a(\mu - 1)\alpha \right]}{(a + b)} \qquad \Rightarrow \qquad \beta = \frac{(a + b)\lambda}{2a(\mu - 1)\alpha}$$

Diffraction of Light

It is the phenomenon of bending of light around the corners of an obstacle/aperture of the size of the wavelength of light.

Note : D Diffraction is the characteristic of all types of waves.

- Greater the wavelength of wave, higher will be it's degree of diffraction.
- Experimental study of diffraction was extended by Newton as well as Young. Most systematic study carried out by Huygens on the basis of wave theory.
- □ The minimum distance at which the observer should be from the obstacle to observe the diffraction of

light of wavelength
$$\lambda$$
 around the obstacle of size *d* is given by $x = \frac{d^2}{4\lambda}$.

(1) **Types of diffraction :** The diffraction phenomenon is divided into two types

Fraunhofer diffraction	Fresnel diffraction
(i) In this case both source and screen are effectively	(i) If either source or screen or both are at finite
at infinite distance from the diffracting device.	distance from the diffracting device (obstacle or aperture), the diffraction is called Fresnel type.
(ii) Common examples : Diffraction at single slit,	(ii) Common examples : Diffraction at a straight edge,
double slit and diffraction grating.	narrow wire or small opaque disc etc.
	Scre cr cr state cr state scre scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre cr state scre scre scre cr state scre s c s c s c cr stattattattattattattattattattattattattat

(2) **Diffraction of light at a single slit :** In case of diffraction at a single slit, we get a central bright band with alternate bright (maxima) and dark (minima) bands of decreasing intensity as shown

(ii) Minima occurs at a point on either side of the central maxima, such that the path difference between the waves from the two ends of the aperture is given by $\Delta = n\lambda$; where n = 1, 2, 3...

$$i.e. d\sin\theta = n\lambda \implies \sin\theta = \frac{n\lambda}{d}$$

(iii) The secondary maxima occurs, where the path difference between the waves from the two ends of the

aperture is given by $\Delta = (2n+1)\frac{\lambda}{2}$; where n = 1, 2, 3...

$$d\sin\theta = (2n+1)\frac{\lambda}{2} \Rightarrow \sin\theta = \frac{(2n+1)\lambda}{2d}$$

(3) Comparison between interference and diffraction

Diffraction	Interference
Results due to the superposition of wavelets from different	Results due to the superposition of waves from two
parts of same wave front. (single coherent source)	coherrent sources.

All secondary fringes are of same width but the central maximum is of double the width $\beta_0 = 2\beta = 2\frac{\lambda D}{d}$	All fringes are of same width $\beta = \frac{\lambda D}{d}$
Intensity decreases as the order of maximum increases.	All fringes are of same intensity
Intensity of minima is not zero.	Intensity of all minimum may be zero
Positions of <i>n</i> th secondary maxima and minima	Positions of <i>n</i> th maxima and minima
$x_{n(\text{Bright})} = (2n+1) \frac{\lambda D}{d}, x_{n(\text{Dark})} = \frac{n\lambda D}{d}$	$x_{n(\text{Bright}} = \frac{n\lambda D}{d}, x_{n(\text{Dark})} = (2n-1)\frac{\lambda D}{d}$
for <i>n</i> th secondary maxima $\Delta = (2n+1)\frac{\lambda}{2}$	Path difference for <i>n</i> th maxima $\Delta = n\lambda$
Path difference for <i>n</i> th minima $\Delta = n\lambda$	Path difference for <i>n</i> th minima $\Delta = (2n-1)\lambda$

(4) **Diffraction and optical instruments :** The objective lens of optical instrument like telescope or microscope etc. acts like a circular aperture. Due to diffraction of light at a circular aperture, a converging lens cannot form a point image of an object rather it produces a brighter disc known as Airy disc surrounded by alternate dark and bright concentric rings.

$$\theta = \frac{1.22\lambda}{2}$$

The angular half width of Airy disc D (where D = aperture of lens)

The lateral width of the image = $f\theta$ (where f = focal length of the lens)

<u>Note</u> : \Box Diffraction of light limits the ability of optical instruments to form clear images of objects when they are close to each other.

(5) **Diffraction grating :** Consists of large number of equally spaced parallel slits. If light is incident normally on a transmission grating, the diffraction of principle maxima (*PM*) is given by $d\sin\theta = n\lambda$; where d = distance between two consecutive slits and is called grating element.

Polarisation of Light

Light propagates as transverse EM waves. The magnitude of electric field is much larger as compared to magnitude of magnetic field. We generally prefer to describe light as electric field oscillations.

(1) Unpolarised light

The light having electric field oscillations in all directions in the plane perpendicular to the direction of propagation is called Unpolarised light. The oscillation may be resolved into horizontal and vertical component.

(2) Polarised light

The light having oscillations only

(i) The plane in which oscillation occurs in the polarised light is called plane of oscillation.

(ii) The plane perpendicular to the plane of oscillation is called plane of polarisation.

(iii) Light can be polarised by transmitting through certain crystals such as tourmaline or polaroids.

(3) Polaroids

It is a device used to produce the plane polarised light. It is based on the principle of selective absorption and is more effective than the tourmaline crystal. or

It is a thin film of ultramicroscopic crystals of quinine idosulphate with their optic axis parallel to each other.

(i) Polaroids allow the light oscillations parallel to the transmission axis pass through them.

(ii) The crystal or polaroid on which unpolarised light is incident is called polariser. Crystal or polaroid on which polarised light is incident is called analyser.

Note :
When unpolarised light is incident on the polariser, the intensity of the transmitted polarised light is half the intensity of unpolarised light.

(4) **Malus law** This law states that the intensity of the polarised light transmitted through the analyser varies as the square of the cosine of the angle between the plane of transmission of the analyser and the plane of the polariser.

(i)
$$I = I_0 \cos^2 \theta$$
 and $A^2 = A_0^2 \cos^2 \theta \Rightarrow A = A_0 \cos^2 \theta$

If
$$\theta = 0^{\circ}$$
, $l = l_0$, $A = A_0$, If $\theta = 45^{\circ}$, $l = \frac{l_0}{2}$, $A = \frac{A_0}{\sqrt{2}}$, If $\theta = 90^{\circ}$, $l = 0$, $A = 0$

(ii) If $I_i =$ Intensity of unpolarised light.

So
$$I_0 = \frac{I_i}{2}$$
 i.e. if an unpolarised light is converted into plane polarised light (say by passing it through a place)

or a Nicol-prism), its intensity becomes half. and $I = \frac{I_i}{2} \cos^2 \theta$

Percentage of polarisation
$$=\frac{(I_{max} - I_{min})}{(I_{max} + I_{min})} \times 100$$

(5) **Brewster's law :** Brewster discovered that when a beam of unpolarised light is reflected from a transparent medium (refractive index = μ), the reflected light is completely plane polarised at a certain angle of incidence (called

the angle of polarisation θ_p).

Note :

Also $\mu = \tan \theta_p$ Brewster's law

(i) For $i < \theta_P$ or $i > \theta_P$

Both reflected and refracted rays becomes partially polarised

(ii) For glass $\theta_P \approx 57^\circ$, for water $\theta_P \approx 53^\circ$

(6) Optical activity and specific rotation

When plane polarised light passes through certain substances, the plane of polarisation of the light is rotated about the direction of propagation of light through a certain angle. This phenomenon is called optical activity or optical rotation and the substances optically active.

If the optically active substance rotates the plane of polarisation clockwise (looking against the direction of light), it is said to be *dextro-rotatory* or *right-handed*. However, if the substance rotates the plane of polarisation anticlockwise, it is called *laevo-rotatory* or *left-handed*.

The optical activity of a substance is related to the asymmetry of the molecule or crystal as a whole, *e.g.*, a solution of cane-sugar is dextro-rotatory due to asymmetrical molecular structure while crystals of quartz are dextro or laevo-rotatory due to structural asymmetry which vanishes when quartz is fused.

Optical activity of a substance is measured with help of polarimeter in terms of 'specific rotation' which is defined as the rotation produced by a solution of length 10 cm (1 dm) and of unit concentration (*i.e.* 1 g/cc) for a given

wavelength of light at a given temperature. *i.e.* $\left[\alpha\right]_{t^{\theta}C}^{\lambda} = \frac{\theta}{L \times C}$ where θ is the rotation in length *L* at concentration *C*.

(7) Applications and uses of polarisation

(i) By determining the polarising angle and using Brewster's law, *i.e.* $\mu = \tan \theta_P$, refractive index of dark transparent substance can be determined.

(ii) It is used to reduce glare.

(iii) In calculators and watches, numbers and letters are formed by liquid crystals through polarisation of light called liquid crystal display (LCD).

(iv) In CD player polarised laser beam acts as needle for producing sound from compact disc which is an encoded digital format.

(v) It has also been used in recording and reproducing three-dimensional pictures.

(vi) Polarisation of scattered sunlight is used for navigation in solar-compass in polar regions.

(vii) Polarised light is used in optical stress analysis known as 'photoelasticity'.

(viii) Polarisation is also used to study asymmetries in molecules and crystals through the phenomenon of 'optical activity'.

Assignment

1. The dual nature of light is exhibited by

- (a) Diffraction and photoelectric effect
- (c) Refraction and interference
- 2. Huygen wave theory allows us to know
 - (a) The wavelength of the wave
 - (c) The amplitude of the wave

[KCET 1999; AIIMS 2001; BHU 2001; Bihar CEE 2004]

- (b) Diffraction and reflection
- (d) Photoelectric effect

[AFMC 2004]

- (b) The velocity of the wave
- (d) The propagation of wave fronts

Wave Motion 19

3.	When a beam of light is used to a (a) Polarised	letermine the position of an object, th (b) Of longer wavelength	e max (c)	imum accuracy is achieved if Of shorter wavelength	the li (d)	ght is [AIIMS 2003] Of high intensity
4.	Which of the following phenome	non does not show the wave nature o	f light	Definentier	(b)	[RPET 2003; MP PMT 2003]
5	(a) Diffraction	(b) Interference	(c)	Refraction	(a)	Photoelectric effect
5.	As a result of interference of two (a) Increased	concretent sources of light, energy is				[MIP PM1 2002; KCE1 2003]
	(b) Redistributed and the distrib	ution does not vary with time				
	(c) Decreased	and abes not vary with time				
	(d) Redistributed and the distrib	ution changes with time				
6.	To demonstrate the phenomenon	of interference, we require two source	es wh	ich emit radiation		[AIEEE 2003]
	(a) Of the same frequency and h	having a definite phase relationship				
	(b) Of nearly the same frequence	у				
	(c) Of the same frequency					
_	(d) Of different wavelengths					
7.	Consider the following statement	S	watar	show booutiful colours what	. :11	ainstad by white light
	Reason (R) : It happens due to th	e interference of light reflected from	the up	oper surface of the thin film.		
	(a) Both <i>A</i> and <i>R</i> are true but <i>R</i>	is a correct explanation of A	(b)	Both <i>A</i> and <i>R</i> are true but <i>I</i>	r is no	t a correct explanation of
	A Bour A and A are true but K		(0)	Both A and A are true but I	(15-11(i a contect explanation of
	(c) A is true but R is false(e) Both A and R are false		(d)	A is false but R is true		
8.	When light passes from one medi	um into another medium, then the ph	nysical	property which does not cha	nge is	
	[C	CPMT 1990; MNR 1995; AMU 1995; U	PSEAT	Г 1999, 2000; MP PET 2002; R	PET 19	996, 2003; AFMC 1993, 98, 2003]
	(a) Velocity	(b) Wavelength	(c)	Frequency	(d)	Refractive index
9.	The frequency of light ray having	g the wavelength 3000Å is				[DPMT 2002]
	(a) 9×10^{13} cycles/sec	(b) 10^{15} cycles/sec	(c)	90 cvcles/sec	(d)	3000 cvcles/sec
10.	Two coherent sources of differen	t intensities send waves which interfe	ere Th	e ratio of maximum intensity	to the	e minimum intensity is 25
10.	The intensities of the sources are	in the ratio		le facto of maximum monsity	to the	[RPMT 1989; UPSEAT 2002]
	(a) 25 : 1	(b) 5:1	(c)	9:4	(d)	25 : 16
11.	What is the path difference of des	structive interference				[AIIMS 2002]
				$(n+1)\lambda$		$(2n+1)\lambda$
	(a) $n\Box$	(b) $n(\Box + 1)$	(c)	2	(d)	2
12.	Two coherent monochromatic	light beams of intensities I and 4	I are	superposed. The maxim	ium a	and minimum possible
	intensities in the resulting bea	m are				
	(a) 51 and 1	[IIT-JEE 1988; AIIMS 199	97; MF	PMT 1997; MP PET 1999; KO	CET (F	Engg./Med.) 2000; MP PET 2002]
13	(a) 51 and 1 Laser beams are used to measure	(b) 51 and 51	(0)	91 and 1	(u)	91 and 51
10.	(a) They are monochromatic	iong uisunee beeduse	(b)	They are highly polarised		[DCE 2001]
	(c) They are coherent		(d)	They have high degree of pa	arallel	ism
14.	Wave nature of light is verified b	у				[RPET 2001]
	(a) Interference	(b) Photoelectric effect	(c)	Reflection	(d)	Refraction
15.	If the wavelength of light in vacu	um be \Box , the wavelength in a medium	m of r	efractive index n will be		[UPSEAT 2001; MP PET 2001]
		$\frac{\lambda}{\lambda}$		$\frac{\lambda}{2}$		2.
	(a) $n\Box$	(b) <i>n</i>	(c)	n²	(d)	n²λ
16.	Newton postulated his corpuscula	ar theory on the basis of		a a a a a a a a a a		[UPSEAT 2001; KCET 2001]
	(a) Newton's rings	aht	(d)	Colours of thin films		
	(c) Recultinear propagation of fi		(a)	Dispersion of white light		
17.	Two coherent sources of intensit be	ies. $^{\prime_1}$ and $^{\prime_2}$ produce an interferen	nce pa	ttern. The maximum intensity	in th	e interference pattern will [UPSEAT 2001; MP PET 2001]
	(a) $l_1 + l_2$	(b) $I_1^2 + I_2^2$	(a)	$(I_1 + I_2)^2$	(A)	$(\sqrt{I_1} + \sqrt{I_2})^2$
18.	Which one among the following	shows particle nature of light	(0)		(u)	[CBSE PM/PD 2001]
	(a) Photo electric effect	(b) Interference	(c)	Refraction	(d)	Polarization
19.	For constructive interference to ta	ake place between two monochromat	ic ligh	t waves of wavelength \Box , the	path	difference should be
			-		[MNR 1992; UPSEAT 2001]

	$(2n-1)^{\lambda}$	$(2n,1)^{\lambda}$				$(2n+1)^{\lambda}$	
	(a) $(27-1)\frac{1}{4}$	(b) $(2/7-1)\frac{1}{2}$	(c)	$n\square$	(d)	(21+1) 2	
20.	In a wave, the path difference	ce corresponding to a phase	e difference of \Box is				[MP PET 2000]
	π	π		λ		λ	
	(a) $\overline{2\lambda}^{\phi}$	(b) $\frac{\lambda}{\lambda}^{\phi}$	(c)	$\frac{1}{2\pi}\phi$	(d)	$\frac{\phi}{\pi}$	
21.	A beam of monochromatic	blue light of wavelength 42	00Å in air travels in v	vater, its wavelength	in water will b	e	[UPSEAT 2000]
	(a) 2800Å	(b) 5600Å	(c)	3150Å	(d)	4000Å	
22.	Wave front originating from	n a point source is					[RPET 2000]
	(a) Cylindrical	(b) Spherical	(c)	Plane	(d)	Cubical	
23.	Waves that can not be polar	rised are					[KCET 2000]
	(a) Transverse waves	(b) Longitudinal v	vaves (c)	Light waves	(d)	Electromagn	etic waves
24.	According to Huygen's way	ve theory, point on any way	e front may be regard	ed as			[J & K CET 2000]
	(a) A photon	(b) An electron	(c)	A new source of wa	ave (d)	Neutron	
25.	The light produced by a lase	er is all the following excer	t				[JIPMER 2000]
	(a) Incoherent	1 (1)	(b)	Monochromatic			
20	(c) In the form of a narrow	v beam (d)	Elec	etromagnetic	1000 2000 UD	150 2000 LU	CEAT 1004 2000
20.	(a) Longitudinal machania	ance is snown by	[MINK 1994; M	Transverse mechan	iggl waves only	VIEK 2000; UI	SEAT 1994, 2000]
	(a) Electromagnetic waves	a waves only	(d)	All the above types	of waves	y	
27	If the ratio of amplitude of t	two waves is $4 \cdot 3$ then the	(u) ratio of maximum an	d minimum intensity	is of waves		
27.	In the fatto of amplitude of t	two waves is 4 . 5, then the	ratio of maximum an	a minimum meensity		1996: AFMC	1997: RPET 20001
	(a) 16:18	(b) 18:16	(c)	49:1	(d)	94 : 1	
28.	If the distance between a po	int source and screen is do	ubled, then intensity of	of light on the screen	will become		
						[RPET	1997; RPMT 1999]
	(a) Four times	(b) Double	(c)	Half	(d)	One-fourth	
29.	Soap bubble appears colour	ed due to the phenomenon	of				
			[CPMT 1972	, 83, 86; AFMC 1995, 9	97; RPET 1997;	CBSE PMT	997; AFMC 1997]
20	(a) Interference	(b) Diffraction	(c)	Dispersion	(d)	Reflection	1004 NOID 10071
30.	1 wo waves are known to be	e conerent if they have		[F Sama wayalanath	KPMT 1994, 95,	97; MP PM1	1996; MNR 1995]
	(a) Same amplitude and w	avelength	(0) (d)	Constant phase diff	erence and can	na wavalanati	
31	An oil flowing on water see	ems coloured due to interfer	ence For observing t	his effect the approx	imate thicknes	s of the oil fil	m should be[DPMT 19
011	(a) 100 Å	(b) 10000 Å	(c)	1 mm	(d)	1 cm	
32.	If L is the coherence length	and <i>c</i> the velocity of light,	the coherent time is		(-)		[MP PMT 1996]
	C	L		С		1	
	(a) cL	(b) \overline{c}	(c)	L	(d)	LC	
33.	By a monochromatic wave.	we mean	(0)		(u)		[AFMC 1995]
	(a) A single ray		(b)	A single ray of a sin	ngle colour		[
	(c) Wave having a single v	wavelength (d)	Ma	ny rays of a single co	olour		
34.	Two coherent sources of lig	tht produce destructive inte	rference when phase of	lifference between th	nem is	[MP PMT	1994; CPMT 1995]
	(a) 2 🗆	(b) 🗆	(c)	$\square/2$	(d)	0	
35.	Which one of the following	statements is correct					[KCET 1994]
	(a) In vacuum, the speed of	of light depends upon frequ	ency				
	(b) In vacuum, the speed of	of light does not depend upo	on frequency				
	(c) In vacuum, the speed of	of light is independent of fr	equency and wavelen	gth			
	(d) In vacuum, the speed of	of light depends upon wave	length				
36.	Figure here shows P and Q	as two equally intense coh	erent sources emittin	g radiations of wavel	length 20 m. T	he separation	<i>PQ</i> is 5.0 <i>m</i>
	and phase of P is ahead of	the phase of Q by 90°. A ,	B and C are three dis	stant points of observ	vation equidist	ant from the	mid-point of
	PQ. The intensity of radiation	ons at A , B , C will bear the	ratio				[NSEP 1994]
	(a) 0:1:4						
	(b) 4:1:0						
	(c) 0:1:2						
	(d) 2:1:0						
37.	In Huygen's wave theory fl	he locus of all points in the	same state of vibratio	n is called			[CBSE PMT 1993]
	(a) A half period zone	(b) Vibrator	(c)	A wavefront	(d)	A rav	
38.	The idea of the quantum nat	ture of light has emerged ir	an attempt to explain	1	()		[CPMT 1990]
	1	0	- I				• •

	(a) Interference	(b) Diffraction
	(c) Radiation spectrum of a black body	(d) Polarisation
•	The necessary condition for an interference by two source of light i	is that the [RPMT 1988; CPMT 198
	(a) Two monochromatic sources should be of same amplitude but	t with a constant phase
	(b) Two sources should be of same amplitude	
	(c) Two point sources should have phase difference varying with	time
	(d) Two sources should be of same wavelength	
•	If the intensity of the waves observed by two coherent sources is <i>I</i> .	. Then the intensity of resultant waves in constructive interference will
		[RPET 198
	(a) $2I$ (b) $4I$	(c) I (d) None of these
	shown also along with normals drawn at 4 and D the refractive ind	ass surface xy . Its position CD after reflaction through a glass stab is level of glass with respect to air will be equal to [CPMT 1986.8]
	shown also along with normals drawn at A and D. the remactive me	B
	(a) SIL	
	sine	x A y
	(b) sin¢'	
	(c) (BD/AC)	
	(d) (<i>AB/CD</i>)	
	Four independent waves are expressed as	
	(i) $y_1 = a_1 \sin \omega t$ (ii) $y_2 = a_2 \sin 2\omega t$ (iii)	$y_3 = a_3 \cos t$ (iv) $y_4 = a_4 \sin(\omega t + \pi / 3)$
	The interference is possible between	(су) Ісрмт 10
	(a) (i) and (ii) (b) (i) and (iv)	(c) (iii) and (iv) (d) Not possible at all
	Colour of light is known by its	(c) (c) mil (c) (mil (c))
	(a) Velocity (b) Amplitude	(c) Frequency (d) Polarisation
	Laser light is considered to be coherent because it consists of	[CPMT 19 [/]
	(a) Many wavelengths	(b) Uncoordinated wavelengths
	(c) Coordinated waves of exactly the same wavelength	(d) Divergent beams
	A laser beam may be used to measure very large distances because	[СРМТ 19
	(a) It is unidirectional (b) It is coherent	(c) It is monochromatic (d) It is not absorbed
	Interference patterns are not observed in thick films, because	
	(a) Most of the incident light intensity is observed within the film	
	(b) A thick film has a high coefficient of reflection	
	(c) The maxima of interference patterns are far from the minima	
	(d) There is too much overlapping of colours washing out the inte	erference pattern
	(d) There is too much overlapping of colours washing out the inte Phenomenon of interference is not observed by two sodium lamps of	erference pattern of same power. It is because both waves have
	(d) There is too much overlapping of colours washing out the inte Phenomenon of interference is not observed by two sodium lamps of (a) Not constant phase difference (b)	erference pattern of same power. It is because both waves have Zero phase difference
	 (d) There is too much overlapping of colours washing out the interpresent of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity 	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies
	 (d) There is too much overlapping of colours washing out the interpresent of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity 	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies
	 (d) There is too much overlapping of colours washing out the interpresent of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity 	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies
	 (d) There is too much overlapping of colours washing out the interplete Phenomenon of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity 	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies
	 (d) There is too much overlapping of colours washing out the interpresent of the interpresent of	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies
	 (d) There is too much overlapping of colours washing out the interpendence of the phenomenon of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity 	 erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies
	 (d) There is too much overlapping of colours washing out the interpendence of the phenomenon of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity Basic In a Young's double slit experiment, the separation between the tr produces the second dark fringe at a distance of 1 mm from the centerpendence of 1 mm from t	 erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies <i>c Level</i> wo slits is 0.9 <i>mm</i> and the fringes are observed one <i>metre</i> away. If it tral fringe, the wavelength of monochromatic source of light used is
	 (d) There is too much overlapping of colours washing out the interpendence of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity Basic In a Young's double slit experiment, the separation between the transformation of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe at a distance of 1 mm from the certification of the second dark fringe data distance of 1 mm from the certification of the second dark fringe data distance of 1 mm from the certification of the second dark fringe data distance of 1 mm from the certification of the second dark fringe data distance of 1 mm from the certification of the second dark fringe data distance of 1 mm from the certification of the second dark fringe data data data data data data data dat	 erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies <i>c Level</i> wo slits is 0.9 <i>mm</i> and the fringes are observed one <i>metre</i> away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (a) 450 mm
	 (d) There is too much overlapping of colours washing out the interpretendent of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity Basic In a Young's double slit experiment, the separation between the transformed dark fringe at a distance of 1 mm from the central of 100 nm. (a) 500 nm (b) 600 nm (b) 600 nm	 wo slits is 0.9 mm and the fringes are observed one metre away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (c) 450 nm (d) 400 nm
	 (d) There is too much overlapping of colours washing out the interpendence of the interpendence of the interpendence (b) (a) Not constant phase difference (b) (b) (c) Different intensity Basic Basic In a Young's double slit experiment, the separation between the tr produces the second dark fringe at a distance of 1 mm from the cent (a) 500 nm (b) 600 nm A monochromatic beams of light is used for the formation of fring slit mica is interposed in the path of one of the interfering beams the second	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies c Level wo slits is 0.9 mm and the fringes are observed one metre away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (c) 450 nm (d) 400 nm ges on the screen by illuminating the two slits in the Young's double
	 (d) There is too much overlapping of colours washing out the interpendence of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity (c) Different intensity (c) Basic (c) Basi	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies c Level wo slits is 0.9 mm and the fringes are observed one metre away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (c) 450 nm (d) 400 nm ges on the screen by illuminating the two slits in the Young's double ten [AIIMS 20
	 (d) There is too much overlapping of colours washing out the interpendence of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity (d) Different intensity (e) S00 nm (f) 600 nm (h) 600 nm 	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies c Level wo slits is 0.9 <i>mm</i> and the fringes are observed one <i>metre</i> away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (c) 450 <i>nm</i> (d) 400 <i>nm</i> ges on the screen by illuminating the two slits in the Young's double ten [AIIMS 20
	 (d) There is too much overlapping of colours washing out the interpendence of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity Basic In a Young's double slit experiment, the separation between the tr produces the second dark fringe at a distance of 1 mm from the cent (a) 500 nm (b) 600 nm A monochromatic beams of light is used for the formation of frings slit mica is interposed in the path of one of the interfering beams the (a) The fringe width increases 	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies c Level wo slits is 0.9 mm and the fringes are observed one metre away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (c) 450 nm (d) 400 nm ges on the screen by illuminating the two slits in the Young's double ten [AIIMS 20
	 (d) There is too much overlapping of colours washing out the interpendent of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity Basic In a Young's double slit experiment, the separation between the transity is a distance of 1 mm from the cent of 1 500 nm (b) 600 nm A monochromatic beams of light is used for the formation of fringslit mica is interposed in the path of one of the interfering beams th (a) The fringe width increases (b) The fringe width decreases 	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies c Level wo slits is 0.9 mm and the fringes are observed one metre away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (c) 450 nm (d) 400 nm ges on the screen by illuminating the two slits in the Young's double ten [AIIMS 20
	 (d) There is too much overlapping of colours washing out the interpendent of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity (d) Different intensity (e) 600 nm (f) 600 nm (f) 600 nm (g) 500 nm (h) 600 nm<td>erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies <i>c Level</i> wo slits is 0.9 <i>mm</i> and the fringes are observed one <i>metre</i> away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (c) 450 <i>nm</i> (d) 400 <i>nm</i> ges on the screen by illuminating the two slits in the Young's double ten [AIIMS 20</td>	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies <i>c Level</i> wo slits is 0.9 <i>mm</i> and the fringes are observed one <i>metre</i> away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 20 (c) 450 <i>nm</i> (d) 400 <i>nm</i> ges on the screen by illuminating the two slits in the Young's double ten [AIIMS 20
	 (d) There is too much overlapping of colours washing out the interpendent of interference is not observed by two sodium lamps of (a) Not constant phase difference (b) (c) Different intensity (d) The fringe pattern disappears 	erference pattern of same power. It is because both waves have Zero phase difference (d) Different frequencies <i>c Level</i> wo slits is 0.9 <i>mm</i> and the fringes are observed one <i>metre</i> away. If it tral fringe, the wavelength of monochromatic source of light used is [KCET 200 (c) 450 <i>nm</i> (d) 400 <i>nm</i> ges on the screen by illuminating the two slits in the Young's double ten [AIIMS 200

Wave Motion 22

1	(a) 0.20 mm	(b) $0.401 mm$	(c) $0.242 mm$	(d) $0.165 mm$
•	in Young's experiment, the fringe width	IISTANCE DETWEEN THE SITS IS REDUCED [IIT 1981; MP PMT 1994; RPMT	a to hair and the distance between 1997; KCET (Engg./Med.) 2000; U	n the slit and screen is doubled, then the PSEAT 2000; AMU (Engg.) 2000; CPMT 2003]
	(a) Will not change	(b) Will become half	(c) Will be doubled	(d) Will become four times
•	In an interference experime wavelength of the light source	nt, third bright fringe is obtained ce in order obtain 5th bright fringe a	at a point on the screen with a t the same point	light of 700 <i>nm</i> . What should be the [KCET 2003]
	(a) 500 nm	(b) 630 <i>nm</i>	(c) 750 <i>nm</i>	(d) 420 <i>nm</i>
•	In Young's double-slit exper becomes β	iment the fringe width is \Box . If entir	e arrangement is placed in a liqui	id of refractive index <i>n</i> , the fringe width [KCET 2003]
	(a) $\frac{1}{n+1}$	(b) <i>n</i> \Box	(c) \Box / n	(d) $\beta/n-1$
			$\frac{1}{3}$ rd	
•	If the separation between slip	is in Young's double slit experiment	t is reduced to 5 , the fringe w	idth becomes n times. The value of n is [MP PE
		1		$\frac{1}{2}$
	(a) 3	(b) 3	(c) 9	(d) 9
5.	When a thin transparent plat the path difference changes l	e of thickness <i>t</i> and refractive index	\Box is placed in the path of one of	the two interfering waves of light, then [MP PMT 2002]
			$(\mu + 1)$	$(\mu - 1)$
	(a) $(\Box + 1)t$	(b) $(\Box - 1)t$	(c) <i>t</i>	(d) t
5.	In a Young's double slit exp	eriment, the source illuminating the	slits is changed from blue to viol	et. The width of the fringes
				[Kerala CET (Med.) 2002]
	(a) Increases	(b) Decreases	(c) Becomes unequal	(d) Remains constant
•	In Young's double slit exper	iment, the intensity of light coming	from the first slit is double the in	tensity from the second slit. The ratio of
	the maximum intensity to the	e minimum intensity on the interfere	ence fringe pattern observed is	[KCET (Mod.) 2002]
	(a) 34	(b) 40	(c) 25	(d) 38
	(a) 54 In Voung's double slit expe	riment the wavelength of light was	(c) 25	While doubling the separation between
	the slits which of the followi	ing is not true for this experiment	changed from 7000A to 3500A.	[Orissa JEE 2002]
	(a) The width of the fringes	s changes		[]
	(b) The colour of bright fri	nges changes		
	(c) The separation between	successive bright fringes changes		
	(d) The separation between	successive dark fringes remains un	changed	
).	In Young's double slit exper	timent, the central bright fringe can	be identified	[KCET (Engg.) 2002]
	(a) By using white light ins	stead of monochromatic light	(b) As it is narrower that	an other bright fringes
	(c) As it is wider than other	r bright fringes	(d) As it has a greater in	ntensity than the other bright fringes
).	Interference was observed in careful observer will see	i interference chamber when air wa	as present, now the chamber is ev	vacuated and if the same light is used, a [CBSE PMT 1993; DPMT 2000; BHU 2002]
	(a) No interference			
	(b) Interference with bright	bands		
	(c) Interference with dark l	bands		
	(d) Interference in which w	idth of the fringe will be slightly in	creased	
			6500%	0. 20%
	A slit of width <i>a</i> is illuminat will be	ed by white light. For red light \mathcal{K}	- 6500A). The first minima is ob	btained at $\theta = 30^\circ$. Then the value of <i>a</i> [MP PMT 1987; CPMT 2002]
	(a) 3250 Å	(b) 6.5×10 ⁻⁴ mm	(c) 1.24 microns	(d) $2.6 \times 10^{-4} cm$
	In the Young's double slit ex the central maximum will be	xperiment with sodium light. The slee (given $\Box = 589 mm$)	its are $0.589 m$ apart. The angula	r separation of the third maximum from [Pb. PMT 2002]
	(a) $\sin^{-1}(0.33 \times 10^8)$	(b) sin ⁻¹ (0.33×10 ^{−6})	(c) sin ⁻¹ (3×10 ⁻⁸)	(d) sin ⁻¹ (3×10 ⁻⁶)
	In the Young's double slit ex	speriment for which colour the fring	e width is least	[MP PMT 1994; UPSEAT 2001: MP PET 2001]
	(a) Red	(b) Green	(c) Blue	(d) Yellow
•	In a Young's double slit exp screen from the slits should l	eriment, the separation of the two slope made	lits is doubled. To keep the same	spacing of fringes, the distance D of the [AMU (Engg.) 2001]
	D	D		
	$(a) \frac{z}{2}$	(b) $\overline{\sqrt{2}}$	(a) 3 D	(d) ΔD
-	(a) - Consider the fall series of t	(D) ·-	(c) $2D$	(a) $4D$
).	Consider the following state	anents		1 . 1. 0.

Assertion (A): In Young's experiment, the fringe width for dark fringes is different from that for bright fringes. **Reason** (R) : In Young's double slit experiment performed with a source of white light, only black and bright fringes are observed

Wava	Mation	22
wave	Motion	23

	Of these statements	LA 113/46 2001	11
	 (a) Both A and R are true and R is a correct explanation of A 	(b) Both A and R are true but R is not a correct explanation of $(a + a) = \frac{1}{2} $	IJ
	(c) Both <i>A</i> and <i>R</i> are false	(d) A is false but R is true	
	(e) <i>A</i> is true but <i>R</i> is false		
66.	In a Young's double slit experiment, 12 fringes are observed to be $600 nm$ is used. If the wavelength of light is changed to $400 nm$, m by	be formed in a certain segment of the screen when light of wavelength number of fringes observed in the same segment of the screen is given [IIT-JEE (Screening) 2001]	1]
	(a) 12 (b) 18	(c) 24 (d) 30	
67.	In Young's double slit experiment, a mica slit of thickness <i>t</i> and re how much distance the fringes pattern will be displaced	refractive index \Box is introduced in the ray from the first source S_1 . By [RPMT 1996, 97; JIPMER 2000	0]
	d D d	d D ()	
	(a) $\frac{D}{D}(\mu - 1)t$ (b) $\frac{d}{d}(\mu - 1)t$	(c) $\overline{(\mu-1)D}$ (d) $\overline{d}^{(\mu-1)}$	
68	Young's double slit experiment is performed with light of waveler	(0) (d) anoth 550 <i>nm</i> . The separation between the slits is 1.10 <i>mm</i> and screen is	
001	placed at distance of 1 <i>m</i> . What is the distance between the consecu	cutive bright or dark fringes [Pb. PMT 2000]	01
	(a) 1.5 mm (b) 1.0 m	(c) $0.5 mm$ (d) None of these	
69.	In interference obtained by two coherent sources, the fringe width	(\Box) has the following relation with wavelength (\Box)	
		[CPMT 1997; MP PMT 2000	0]
	$() \beta \propto \lambda^2 $	() $\beta \propto \lambda^{-2}$	
70	(a) $p \rightarrow \infty$ (b) $\Box \Box \Box$	$ \begin{array}{c} (c) \\ \downarrow \\ $	
70.	In a double slit experiment, instead of taking slits of equal widths	is, one slit is made twice as wide as the other. Then in the interference	01
	pattern	[III-JEE (Screening) 2000	ŋ
	(a) The intensities of both the maxima and the minima increase (b) The intensity of maxima increases and the minima has zero in	ntongity	
	(b) The intensity of maxima increases and the minima has zero in		
	(d) The intensity of maxima decreases and that of the minima has zero in	intensity	
71	In Young's double slit experiment with a source of light of waveley	enoth 6320^{3} the first maxima will occur when	
/1.	in roung 5 double sint experiment with a source of right of wavele	Roorkee 1999	91
	(a) Path difference is 9480 \mathring{A}	(b) Phase difference is $2\square$ radian	1
	(c) Path difference is 6320 Å	(d) Phase difference is \Box radian	
70	If a transmission of the function in the $\Box = 1.5 + 1.4$ distances	$t = 2.5 \times 10^{-5}$ is instant 4 in front of one of the dist of Years?	
72.	double slit experiment, how much will be the shift in the interference slits and screen is 100 cm	ence pattern? The distance between the slits is $0.5 mm$ and that between [AIIMS 1999]	9]
	(a) 5 cm (b) 2.5 cm	(c) $0.25 \ cm$ (d) $0.1 \ cm$	
73.	If a torch is used in place of monochromatic light in Young's exper	eriment what will happens	
		[MH CET (Med.) 1999; KCET (Med.) 1999	9]
	(a) Fringe will appear for a moment then it will disappear	(b) Fringes will occur as from monochromatic light	-
	(c) Only bright fringes will appear	(d) No fringes will appear	
74.	When a thin metal plate is placed in the path of one of the interferin	ing beams of light [KCET (Engg./Med.) 1999	9]
	(a) Fringe width increases (b) Fringes disappear	(c) Fringes become brighter (d) Fringes become blurred	
75.	What happens by the use of white light in Young's double slit expe	periment	
	[Similar to (AIIMS 2001; Kerala	2000); IIT-JEE 1987; RPMT 1993; MP PMT 1996; RPET 1998; UPSEAT 1999	9]
	(a) Bright minges are obtained (b) Only bright and dark fringes are obtained		
	(c) Central fringe is bright and two or three coloured and dark fri	inges are observed	
	(d) None of these		
76.	Young's experiment is performed in air and then performed in wate	ter, the fringe width [CPMT 1990; MP PMT 1994; RPMT 1997	71
	(a) Will remain same (b) Will decrease	(c) Will increase (d) Will be infinite	
77.	In Young's experiment, one slit is covered with a blue filter and the	he other (slit) with a yellow filter. Then the interference pattern	
	—	[MP PET 1997]	
	(a) Will be blue (b) Will be yellow	(c) Will be green (d) Will not be formed	
78.	Two sources give interference pattern which is observed on a scrudistance D is now doubled, the fringe width will	reen. D distance apart from the sources. The fringe width is 2w. If the [MP PET 1997	7]
	(a) Become <i>w</i> /2 (b) Remain the same	(c) Become w (d) Become $4w$	
79.	In Young's double slit experiment, angular width of fringes is 0.20	0° for sodium light of wavelength 5890 Å. If complete system is dipped	
	in water, then angular width of fringes becomes	[RPET 1997	7]
	(a) 0.11° (b) 0.15°	(c) 0.22° (d) 0.30°	

Wave Motion 24

80.	In two separate set-ups of the Yo	oung's double slit experiment, fringe	es of e	equal width are observed wh	en lig	ts of waveler	gths in the
	ratio 1 : 2 are used. If the ratio of	the slit separation in the two cases is	s 2 : 1	, the ratio of the distances be	twee	n the plane of t	he slits and
	the screen in the two set-ups is		$\langle \rangle$	1 4	(1)	[Kuruks	hetra CEE 1996]
01	(a) $4:1$	(b) 1:1	(c)	1:4	(d)	2:1	
81.	(a) Pright	(b) Dark	(a)	First bright and than dark	(4)	First dorl	[MP PM1 1996]
bright	(a) Bright	(b) Dark	(0)	First oright and then dark	(a)	Flist dalk	and then
87	In Voung's double slit experimen	t the distance between sources is 1 n	nm an	d distance between the scree	n and	cource is 1m I	f the fringe
02.	width on the screen is 0.06 cm the	$r_{\rm en} =$	nn an	a distance between the server	i anu	source is 1m. I	I the fillinge
	(a) $6000 ^{4}$	(b) $4000 ^{4}$	(c)	1200 Å	(d)	2400 Å	
83	In a Young's double slit experim	ent the distance between two coher	ent so	Surces is $0.1 mm$ and the dis	(u) tance	between the s	lits and the
05.	screen is 20 cm. If the wavelength	of light is 5460 $Å$ then the distance h	netwee	en two consecutive maxima is		between the s	ITES AND THE
	(a) 0.5 mm	(b) $11 mm$	(c)	1 5 mm	, (d)	2.2 mm	
~ .		(0) (1) (0) (1) (1) (2) (3) (1)	(0)				
84.	If a thin mica sheet of thickness	t and refractive index $\mu = (3, 3)$ is	s plac	ed in the path of one of the	inter	fering beams a	s shown in
	figure, then the displacement of th	ie fringe system is					[CPMT 1995]
	Dt		1				
	(a) 3d				\uparrow^{P}		
	Dt			s			
	(b) $\overline{5d}$			2			
				d s			
	$\frac{Dt}{4d}$			D			
	(c) 40				-1		
	2Dt						
	(d) 5 <i>d</i>						
85.	In a double slit experiment, the fi	rst minimum on either side of the ce	ntral 1	maximum occurs where the p	ath d	ifference betwe	een the two
	paths is						[CPMT 1995]
	λ	λ					
	(a) $\overline{4}$	(b) 2	(c)		(d)	2 🗆	
86.	In Young's double slit experimen	t, the phase difference between the li	ight w	vaves reaching third bright fri	nge f	rom the central	fringe will
				8 8	0		U
	be $(\Box = 6000 \text{ Å})$						[MP PMT 1994]
	be $(\Box = 6000 \text{ Å})$ (a) Zero	(b) 2 🗆	(c)	4 🗆	(d)	6	[MP PMT 1994]
07	be $(\Box = 6000 \text{ Å})$ (a) Zero So divers light $(\lambda = 6 \times 10^{-7} \text{ m})$ is a	(b) 2	(c)	4	(d)	6D	[MP PMT 1994]
87.	be $(\Box = 6000 \text{ Å})$ (a) Zero Sodium light $(\lambda = 6 \times 10^{-7} \text{ m})$ is interfering upon traine in	(b) 2 used to produce interference pattern.	(c) The o	4□ bserved fringe width is 0.12	(d) mm. 1	6□ The angle betwo	[MP PMT 1994] een the two
87.	be $(\Box = 6000 \text{ Å})$ (a) Zero Sodium light $(\lambda = 6 \times 10^{-7} \text{ m})$ is interfering wave trains is	(b) $2\square$ used to produce interference pattern.	(c) The o	$4\square$ bserved fringe width is 0.12	(d) mm. 1	6	[MP PMT 1994] een the two [CPMT 1993]
87.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} \text{ m}$) is interfering wave trains is (a) $5 \times 10^{-1} \text{ rad}$	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$	(c) The o (c)	4 \Box bserved fringe width is 0.12 $1 \times 10^{-2} rad$	(d) mm. 1 (d)	6□ The angle betwo $1 \times 10^{-3} rad$	[MP PMT 1994] een the two [CPMT 1993]
87. 88.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} \text{ m}$) is interfering wave trains is (a) $5 \times 10^{-1} \text{ rad}$ The contrast in the fringes in any	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on	(c) The o (c)	4□ bserved fringe width is 0.12 1×10^{-2} rad	(d) mm. 1 (d)	$6\square$ The angle betwo $1 \times 10^{-3} rad$	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992]
87. 88.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} \text{ m}$) is interfering wave trains is (a) $5 \times 10^{-1} \text{ rad}$ The contrast in the fringes in any (a) Fringe width	 (b) 2□ used to produce interference pattern. (b) 5×10³ rad interference pattern depends on 	(c) The o (c) (b)	4 \Box bserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources	(d) mm. 1 (d)	$6\square$ The angle betwee $1 \times 10^{-3} rad$	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992]
87. 88.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits	 (b) 2□ used to produce interference pattern. (b) 5×10⁻³ rad interference pattern depends on 	(c) The o (c) (b) (d)	4 □ bserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength	(d) mm. 1 (d)	$6\square$ The angle betwo $1 \times 10^{-3} rad$	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992]
87. 88. 89.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} \text{ m}$) is interfering wave trains is (a) $5 \times 10^{-1} \text{ rad}$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment	 (b) 2□ used to produce interference pattern. (b) 5×10³ rad interference pattern depends on nt, carried out with light of wavelenge 	(c) The o (c) (b) (d) gth □	4 □ bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw	(d) mm. 1 (d) reen t	$6\square$ The angle between $1 \times 10^{-3} rad$ the slits is 0.2 <i>r</i>	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the
87. 88. 89.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits	(b) 2 used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$	(c) The o (c) (b) (d) gth □ 0. The o	4 □ bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t	(d) mm. 1 (d) reen t	$6\square$ The angle between $1 \times 10^{-3} rad$ the slits is 0.2 <i>r</i> ntral maximum	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth
87. 88. 89.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiments screen is at 200 cm from the slites maximum) will be at x equal to	(b) 2 used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$	(c) The o (c) (b) (d) gth □ 0. The o	4 \Box bserved fringe width is 0.12 $I \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t	(d) mm. 1 (d) een t he ce	6 \Box The angle between $1 \times 10^{-3} rad$ the slits is 0.2 <i>r</i> ntral maximum [0]	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992]
87. 88. 89.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm	(b) 2 used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on ht, carried out with light of waveleng its. The central maximum is at $x =$ (b) 1.5 cm	(c) The o (c) (b) (d) gth □ (c)	4 beserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking the formation of the source) 0.5 cm	(d) mm. 1 (d) een t he ce (d)	$6\square$ The angle between $1 \times 10^{-3} rad$ the slits is $0.2 r$ ntral maximum [0] 5.0 cm	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992]
87. 88. 89. 90.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slit maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two columns	(b) 2 used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on ht, carried out with light of waveleng its. The central maximum is at $x =$ (b) 1.5 cm herent sources are placed 0.90 mm ap	(c) The o (c) (b) (d) gth □ 0. The (c) art and	4 bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on	 (d) (d) (d) (een t (d) (e met 	6 The angle between $1 \times 10^{-3} rad$ the slits is 0.2 <i>r</i> ntral maximum [0 5.0 <i>cm</i> <i>re</i> away. If it provides the slite of the	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the
87. 88. 89. 90.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slit maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two cols second dark fringe at a distance of	(b) 2 used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$ (b) 1.5 cm herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa	(c) The o (c) (b) (d) gth □ 0. T (c) art and avelen	4 \Box bserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on right of monochromatic light u	 (d) (d) (d) (een t (d) (e met (ssed v 	6 The angle between $1 \times 10^{-3} rad$ the slits is 0.2 r ntral maximum [0] 5.0 cm re away. If it provould be	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the
87. 88. 89. 90.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two colors second dark fringe at a distance of	(b) 2 used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on ht, carried out with light of waveleng its. The central maximum is at $x =$ (b) 1.5 cm herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa	(c) The o (c) (d) (d) (d) (c) art and avelen	4 bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on ogth of monochromatic light u	 (d) (d) (d) (een t (d) (e met (d) 	6 The angle between $1 \times 10^{-3} rad$ the slits is 0.2 <i>r</i> ntral maximum [0] 5.0 <i>cm</i> <i>re</i> away. If it provide vould be [0]	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992]
87. 88. 89. 90.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two coll second dark fringe at a distance of (a) $60 \times 10^{-4} cm$	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$	(c) The o (c) (b) (d) (d) (d) 0. The (c) (c)	4 bserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on 10×10 ⁻⁵ cm	 (d) mm. 1 (d) een t he ce (d) e met (d) (d) 	$6\square$ The angle between $1 \times 10^{-3} rad$ the slits is 0.2 <i>r</i> ntral maximum [0] 5.0 <i>cm</i> <i>re</i> away. If it provide be $re = 10^{-5} cm$	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992]
87.88.89.90.91.	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slit maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two cold second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sour	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$ (b) 1.5 cm herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ rrces are obtained by	(c) The o (c) (b) (d) (c) art and avelen (c)	4 beserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on ogth of monochromatic light u $10 \times 10^{-5} cm$	 (d) (d) (d) (een t (d) (d) (e met (d) (d) 	6 The angle between $1 \times 10^{-3} rad$ the slits is 0.2 m ntral maximum [0] 5.0 cm re away. If it provide (0) 60 × 10^{-5} cm	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the h as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991]
 87. 88. 89. 90. 91. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two cold second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sourt (a) Division of wavefront	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on ht, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ irces are obtained by (b) Division of amplitude	(c) The o (c) (b) (d) (c) (c) (c) (c) (c) (c)	4 beserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on ogth of monochromatic light u $10 \times 10^{-5} cm$ Division of wavelength	 (d) (mm. 1 (d) (d) (e met (d) (d) (d) (d) (d) 	6 The angle between $1 \times 10^{-3} rad$ The slits is 0.2 <i>r</i> ntral maximum [0] 5.0 <i>cm</i> <i>re</i> away. If it provide [0] 60×10^{-5} <i>cm</i> None of these	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] mm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991]
 87. 88. 89. 90. 91. 92. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two cold second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sourt (a) Division of wavefront In Young's experiment, the ratio	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on ht, carried out with light of waveleng its. The central maximum is at $x =$ (b) 1.5 cm herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ micres are obtained by (b) Division of amplitude of maximum and minimum intensitie	(c) The o (c) (b) (d) (c) (c) (c) (c) (c) (c) (c) (c	4 beserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on ogth of monochromatic light u $10 \times 10^{-5} cm$ Division of wavelength he fringe system is 9 : 1. The	 (d) mm. 1 (d) eeen t he cee (d) e met (d) (d) (d) (d) (d) ratio 	6 The angle between $1 \times 10^{-3} rad$ The slits is $0.2 r$ ntral maximum [0] 5.0 cm re away. If it provide be [0] $60 \times 10^{-5} cm$ None of these of amplitudes	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] mm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent
 87. 88. 89. 90. 91. 92. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two cold second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sout (a) Division of wavefront In Young's experiment, the ratio sources is	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ nerent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ urces are obtained by (b) Division of amplitude of maximum and minimum intensitie	(c) The o (c) (d) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	4 beserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on ogth of monochromatic light u $10 \times 10^{-5} cm$ Division of wavelength he fringe system is 9 : 1. The	(d) mm. (d) (d) ee met (d) (d) (d) ratio	6 The angle between $1 \times 10^{-3} rad$ The slits is $0.2 r$ ntral maximum [0] 5.0 cm re away. If it provides [0] $60 \times 10^{-5} cm$ None of these of amplitudes	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent [NCERT 1990]
 87. 88. 89. 90. 91. 92. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two cold second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sout (a) Division of wavefront In Young's experiment, the ration sources is (a) 9:1	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on ht, carried out with light of waveleng its. The central maximum is at $x =$ (b) 1.5 cm herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ trees are obtained by (b) Division of amplitude of maximum and minimum intensitie (b) $3:1$	(c) The o (c) (d) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	4 bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on ogth of monochromatic light u $10 \times 10^{-5} cm$ Division of wavelength he fringe system is 9 : 1. The 2 : 1	(d) mm. 1 (d) (d) e en t t he ce (d) (d) ratio (d)	6 The angle between $1 \times 10^{-3} rad$ The slits is $0.2 r$ the slits is $0.2 r$ ntral maximum [0] 5.0 cm re away. If it provides [0] $60 \times 10^{-5} cm$ None of these of amplitudes 1:1	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent [NCERT 1990]
 87. 88. 89. 90. 91. 92. 93. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiments screen is at 200 cm from the slits maximum) will be at x equal to (a) $1.67 cm$ In a Young's experiment, two colds second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sourt (a) Division of wavefront In Young's experiment, the rations sources is (a) 9:1 In a certain double slit experiment	(b) $2\Box$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on ht, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ micros are obtained by (b) Division of amplitude of maximum and minimum intensitie (b) $3:1$ tal arrangement interference fringes of	(c) The o (c) (b) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	4 bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on the fringes are observed on the fringe system is 9 : 1. The 2 : 1 th 1.0 mm each are observed	(d) mm. (d) (d) een t he ce (d) (d) ratio (d) wher	6 The angle between $1 \times 10^{-3} rad$ The slits is $0.2 r$ ntral maximum [0] 5.0 cm re away. If it provides $1 \approx 10^{-5} cm$ None of these of amplitudes $1 \approx 1$ a light of wavel	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent [NCERT 1990] ength 5000
 87. 88. 89. 90. 91. 92. 93. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experimer screen is at 200 cm from the sl maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two col- second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sour (a) Division of wavefront In Young's experiment, the ratio sources is (a) 9 : 1 In a certain double slit experimen Å is used. Keeping the set up unal	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ micros are obtained by (b) Division of amplitude of maximum and minimum intensitie (b) $3:1$ tal arrangement interference fringes of tered, if the source is replaced by and	(c) The o (c) (b) (d) (gth \Box 0. The o (c) (c) (c) (c) (c) (c) (c) (c)	4 □ bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on 10×10 ⁻⁵ cm Division of wavelength he fringe system is 9 : 1. The 2 : 1 th 1.0 mm each are observed source of wavelength 6000 Å,	(d) mm. (d) (d) een t the ce (d) (d) ratio (d) wher the fit	6 The angle between $1 \times 10^{-3} rad$ The slits is 0.2 <i>r</i> ntral maximum [0] 5.0 <i>cm</i> <i>re</i> away. If it provides $1 \approx 10^{-5} crr$ None of these of amplitudes $1 \approx 1$ hight of wavel ringe width will	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent [NCERT 1990] ength 5000
 87. 88. 89. 90. 91. 92. 93. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) $1.67 cm$ In a Young's experiment, two cold second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sout (a) Division of wavefront In Young's experiment, the ration sources is (a) 9:1 In a certain double slit experiment \hat{A} is used. Keeping the set up unal (a) $0.5 mm$	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ trees are obtained by (b) Division of amplitude of maximum and minimum intensitie (b) $3:1$ tal arrangement interference fringes of tered, if the source is replaced by and (b) $1.0 mm$	(c) The o (c) (b) (d) (d) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	4 bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on 10×10 ⁻⁵ cm Division of wavelength he fringe system is 9 : 1. The 2 : 1 th 1.0 mm each are observed iource of wavelength 6000 Å, 1.2 mm	(d) mm. 1 (d) (d) een t he ce (d) (d) (d) ratio (d) wher the fn (d)	6 The angle between $1 \times 10^{-3} rad$ The slits is 0.2 <i>r</i> ntral maximum [0] 5.0 <i>cm</i> <i>re</i> away. If it provide $60 \times 10^{-5} cm$ None of these of amplitudes 1 : 1 h light of wavel inge width will 1.5 <i>mm</i>	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the h as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent [NCERT 1990] ength 5000 be[CPMT 1988]
 87. 88. 89. 90. 91. 92. 93. 94. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slit maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two cold second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sout (a) Division of wavefront In Young's experiment, the ration sources is (a) 9 : 1 In a certain double slit experiment \hat{A} is used. Keeping the set up unal (a) 0.5 mm In Young's double slit experiment	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on nt, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ therent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wat (b) $10 \times 10^{-4} cm$ trees are obtained by (b) Division of amplitude of maximum and minimum intensitie (b) $3:1$ tal arrangement interference fringes of tered, if the source is replaced by and (b) $1.0 mm$ t, if the slit widths are in the ratio 1	(c) The o (c) (b) (d) (d) (d) (c) (c) (c) (c) (c) (c) (c) (c	4 □ bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on gth of monochromatic light u $10 \times 10^{-5} cm$ Division of wavelength he fringe system is 9 : 1. The 2 : 1 th 1.0 mm each are observed source of wavelength 6000 Å, 1.2 mm en the ratio of the intensity a	(d) mm. 1 (d) (d) een t he ce (d) (d) (d) ratio (d) wher the fin (d) t mini	6 The angle between $1 \times 10^{-3} rad$ The slits is 0.2 <i>r</i> ntral maximum [0] 5.0 <i>cm</i> <i>re</i> away. If it provide $60 \times 10^{-5} cm$ None of these of amplitudes 1 : 1 h light of wavel inge width will 1.5 <i>mm</i> ima to that at m	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] nm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent [NCERT 1990] ength 5000 be[CPMT 1988] maxima will
 87. 88. 89. 90. 91. 92. 93. 94. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} \text{ m}$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experiment screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two cold second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sout (a) Division of wavefront In Young's experiment, the ration sources is (a) 9:1 In a certain double slit experiment Å is used. Keeping the set up unal (a) 0.5 mm In Young's double slit experiment be	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on at, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ therent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wat (b) $10 \times 10^{-4} cm$ micros are obtained by (b) Division of amplitude of maximum and minimum intensitie (b) $3:1$ tal arrangement interference fringes of tered, if the source is replaced by and (b) $1.0 mm$ t, if the slit widths are in the ratio 1 is	(c) The o (c) (b) (d) (c) (c) (c) (c) (c) (c) (c) (c	4 □ bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on gth of monochromatic light u $10 \times 10^{-5} cm$ Division of wavelength he fringe system is 9 : 1. The 2 : 1 th 1.0 mm each are observed source of wavelength 6000 Å, 1.2 mm en the ratio of the intensity a	(d) mm. (d) (d) een t the ce (d) (d) (d) ratio (d) wher the fi (d) t mini	6 The angle between $1 \times 10^{-3} rad$ The slits is 0.2 <i>r</i> ntral maximum [0] 5.0 <i>cm</i> <i>re</i> away. If it provide (0) 60×10^{-5} <i>cm</i> None of these of amplitudes 1 : 1 hlight of wavel inge width will 1.5 <i>mm</i> ima to that at m	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] mm and the h as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent [NCERT 1990] ength 5000 be[CPMT 1988] maxima will [MP PET 1987]
 87. 88. 89. 90. 91. 92. 93. 94. 	be ($\Box = 6000 \text{ Å}$) (a) Zero Sodium light ($\lambda = 6 \times 10^{-7} m$) is interfering wave trains is (a) $5 \times 10^{-1} rad$ The contrast in the fringes in any (a) Fringe width (c) Distance between the slits In Young's double slit experimer screen is at 200 cm from the slits maximum) will be at x equal to (a) 1.67 cm In a Young's experiment, two col- second dark fringe at a distance of (a) $60 \times 10^{-4} cm$ In Fresnel's biprism, coherent sour (a) Division of wavefront In Young's experiment, the rations sources is (a) 9:1 In a certain double slit experiment Å is used. Keeping the set up unal (a) 0.5 mm In Young's double slit experiment be (a) 1	(b) $2\square$ used to produce interference pattern. (b) $5 \times 10^{-3} rad$ interference pattern depends on ht, carried out with light of waveleng its. The central maximum is at $x =$ (b) $1.5 cm$ herent sources are placed 0.90 mm ap f 1 mm from the central fringe, the wa (b) $10 \times 10^{-4} cm$ trees are obtained by (b) Division of amplitude of maximum and minimum intensitie (b) $3:1$ tal arrangement interference fringes of tered, if the source is replaced by and (b) $1.0 mm$ t, if the slit widths are in the ratio 1 : (b) $1/9$	(c) The o (c) (b) (d) (c) (c) (c) (c) (c) (c) (c) (c	4 bbserved fringe width is 0.12 $1 \times 10^{-2} rad$ Intensity ratio of the sources Wavelength = 5000 Å, the distance betw he third maximum (taking t 0.5 cm d the fringes are observed on ogth of monochromatic light u $10 \times 10^{-5} cm$ Division of wavelength he fringe system is 9 : 1. The 2 : 1 th 1.0 mm each are observed source of wavelength 6000 Å, 1.2 mm en the ratio of the intensity a 1/4	(d) mm. 1 (d) (een t t he ce (d) (d) (d) (d) wher the fin (d) t mini (d)	6 The angle between $1 \times 10^{-3} rad$ The slits is $0.2 r$ nutral maximum (0) 5.0 cm re away. If it provides (0) $60 \times 10^{-5} cm$ None of these of amplitudes 1:1 a light of wavelly inge width willy 1.5 mm ima to that at m 1/3	[MP PMT 1994] een the two [CPMT 1993] [Roorkee 1992] mm and the n as zeroth CBSE PMT 1992] roduces the CBSE PMT 1992] [RPET 1991] of coherent [NCERT 1990] ength 5000 be[CPMT 1988] maxima will [MP PET 1987]

Wave Motion 25

95.	The Young's experiment is performed with the lights of blue ($\Box = 4$	4360 Å) and green colour ($\Box = 5460$ Å). If the dist	ance of the 4th
	ringe from the centre is x, then	·/DI	[CPM1 1987]
	VRIud - V(Groot)	x(Blud < x(Greet) x(Greet)	$\frac{5400}{4360}$
			, 4300
96.	In Young's experiment, keeping the distance of the slit from screen co	onstant if the slit width is reduced to half, then	[CPMT 1986]
	(a) The minge width will be doubled	(b) The fringe width will reduce to half	
	(c) The fringe width will not change	(d) The fringe width will become $\sqrt{2}$ times	
97.	In Young's experiment, if the distance between screen and the slit ape	erture is increased the fringe width will	[RPET 1986]
	(a) Decrease	(b) Increases but intensity will decrease	
	(c) Increase but intensity remains unchanged	(d) Remains unchanged but intensity decreases	
98.	In Fresnel's biprism experiment, the two coherent sources are		[RPET 1985]
	(a) Real	(b) Imaginary (d) None of these	
99	(c) One is real and the other is infaginary	(d) None of these	[RPFT 1085]
<i>))</i> .	(a) Between the prism and the slit aperture		[KI E1 1703]
	(b) Of the prism from the screen		
	(c) Of screen from the imaginary light sources		
	(d) Of the screen from the prism and the distance from the imaginary	y sources	
100.	In the Young's double slit experiment, the ratio of intensities of bright	t and dark fringes is 9. This means that	[IIT-JEE 1982]
	(a) The intensities of individual sources are 5 and 4 units respectivel	ly	
	(b) The intensities of individual sources are 4 and 1 units respectivel	ly	
	(d) The ratio of their amplitudes is 2		
101.	The figure below shows a double slit experiment. P and Q are the sl	lits. The path lengths <i>PX</i> and <i>QX</i> are $n\Box$ and $(n + 2)$) respectively
	where <i>n</i> is a whole number and \Box is the wavelength. Taking the central	al bright fringe as zero, what is formed at X	
	(a) First bright	P Are other	
	(b) First dark	2)	
	(c) Second bright	2	Ser
	(d) Second dark		een
102.	A plate of thickness t made of a material of refractive index \Box is pl	laced in front of one of the sites in a double site ex	perment. What
	should be the minimum thickness t which will make the intensity at the	he centre of the fringe pattern zero	
	$(\mu - 1)\frac{\lambda}{2}$	$\frac{1}{2(\mu-1)}$	
	(a) 2 (b) $(\mu - 2\mu)$	(c) $(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c$	
102	The distance of a state (a frequencies index) II. for the to formation of 2	$\frac{3\pi}{4}$	
103.	The thickness of a plate (refractive index r^{-1} for light of wavelength ') which will introduce a path difference of $\frac{1}{3}$	
	$(3, \frac{3\pi}{4(\mu-1)})$ $(3, \frac{3\pi}{2(\mu-1)})$	$() \frac{\pi}{2(\mu-1)}$ $() \frac{3\pi}{4\mu}$	
	(a) $(b) = (c - c)$	(c) (d) (d) (c)	
104.	In the Young's double slit experiment, if the phase difference between	n the two waves interfering at a point is \Box , the intense	sity at that point
	can be expressed by the expression (where $A + B$ depends upon the an	mplitude of the two waves)	MP PMT 20021
		[IVIT FIVIT/FET 1998	, 1411 1 1411 2003]
	(a) $I = \sqrt{A^2 + B^2 \cos^2 \phi}$ (b)	(c) $I = A + B \cos \phi / 2$ (d) $I = A + B \phi$	Bcos∳

In the adjacent diagram CP represents wavefronts and AO and BP the corresponding two rays. Find the condition on 🗆 for constructive 105. interference at P between the ray BP and reflected ray OP [IIT-JEE (Screening) 2003]

(a) $\cos\theta = 3\lambda / 2d$

- (b) $\cos\theta = \lambda / 4d$
- (c) $\sec\theta \cos\theta = \lambda / d$
- (d) $\sec\theta \cos\theta = 4\lambda / d$
- (a) be null (b) result (b) result (c) res

3

(d)

- (a) 2□
- **108.** In an interference arrangement similar to Young's double slit experiment, the slits S_1 and S_2 are illuminated with coherent microwave sources each of frequency 10^6 Hz. The sources are synchronized to have zero phase difference. The slits are separated by distance d = 150 m. The intensity $I(\square)$ is measured as a function of \square , where \square is defined as shown. If I_0 is maximum intensity, then $I(\square)$ for $0 \le 0 \le 90^\circ$ is given by

 2λ

3

(b)

109. In Young's double slit experiment, white light is used. The separation between the slits is b. the screen is at a distance d(d >> b) from the slits. Some wavelengths are missing exactly in front of one slit. These wavelengths are [IIT-JEE 1984; AIIMS 1995]

(a)
$$\lambda = \frac{b^2}{d}$$
 (b) $\lambda = \frac{2b^2}{d}$ (c) $\lambda = \frac{b^2}{3d}$ (d) $\lambda = \frac{2b^2}{3d}$

110. In a two slit experiment with monochromatic light fringes are obtained on a screen placed at some distance from the sits. If the screen is moved by $5 \times 10^{-2} m$ towards the slits, the change in fringe width is $3 \times 10^{-5} m$. If separation between the slits is $10^{-3} m$, the wavelength of light used is [Roorkee 1992] (a) 6000 Å (b) 5000 Å (c) 3000 Å (d) 4500 Å

(a) 6000 (b) 5000 (c) 3000 (d) 4500**111.** In the figure is shown Young's double slit experiment. Q is the position of the first bright fringe on the right side of O. P is the 11^{th}

fringe on the other side, as measured from Q. If the wavelength of the light used is $6000 \times 10^{-10} m$, then S_1B will be equal to [CPMT 1986, 92]

- (a) $6 \times 10^{-6} m$
- (b)
- (c) $3.138 \times 10^{-7} m$
- (d) $3.144 \times 10^{-7} m$

112. In Young's double slit experiment, the two slits act as coherent sources of equal amplitude A and wavelength □. In another experiment with the same set up the two slits are of equal amplitude A and wavelength □ but are incoherent. The ratio of the intensity of light at the mid-point of the screen in the first case to that in the second case is [IIT-JJE 1986]
(a) 1:2
(b) 2:1
(c) 4:1
(d) 1:1

113. When light of wavelength \Box falls on a thin film of thickness *t* and refractive index *n*, the essential condition for the production of constructive interference fringes by the rays *A* and *B* are (*m* = 1, 2, 3,)

(a)
$$2nt\cos r = \left(m - \frac{1}{2}\right)\lambda$$

- (b) $2nt\cos r = m\lambda$
- (c) $nt\cos r = m\lambda$

(d) $nt\cos r = (m-1)\lambda$

114. Four light waves are represented by

- 126. In Young's experiment the wavelength of red light is 7800 Å and that of blue light is 5200 Å. The value of n for which the ^{(n+1)th} blue bright band coincides with the nth red band is
 (a) 4 (b) 3 (c) 2 (d) 1
- 127. In a double slit experiment if 5th dark fringe is formed opposite to one of the slits, the wavelength of light is $d^{2} \qquad d^{2} \qquad d^{2} \qquad d^{2}$
 - (a) $\frac{d}{6D}$ (b) $\frac{d}{5D}$ (c) $\frac{d}{15D}$ (d) $\frac{d}{9D}$

128. In a Young's double slit experiment one of the slits is advanced towards the screen by a distance d/2 and $d = n\lambda$ where *n* is an odd

integer and d is the initial distance between the slits. If I_0 is the intensity of each wave from the slits, the intensity at O is

- $\begin{array}{c}
 I_{0} \\
 \hline I_{0} \\
 \hline 4 \\
 \hline 0
 \end{array}$
- (c) 0
- (d) $2l_0$

(a)

(b)

- 129. Two ideal slits S_1 and S_2 are at a distance *d* apart, and illuminated by light of wavelength λ passing through an ideal source slit *S* placed on the line through S_2 as shown. The distance between the planes of slits and the source slit is *D*. A screen is held at a distance *D* from the plane of the slits. The minimum value of *d* for which there is darkness at *O* is
 - (a) $\sqrt{\frac{3\lambda D}{2}}$ (b) $\sqrt{\lambda D}$ (c) $\sqrt{\frac{\lambda D}{2}}$ $s = \begin{bmatrix} s \\ 1 \\ s \\ 0 \end{bmatrix}$

130. In a double slit experiment interference is obtained from electron waves produced in an electron gun supplied with voltage V. if \Box is the wavelength of the beam, D is the distance of screen, d is the spacing between coherent source, h is Planck's constant, e is charge on electron and m is mass of electron then fringe width is given as

		2hD		hd		2hd
(a)	(b)	√meVd	(c)	√2meVD	(d)	√meVD

- 131. In a double slit arrangement fringes are produced using light of wavelength 4800 Å. One slit is covered by a thin plate of glass of refractive index 1.4 and the other with another glass plate of same thickness but of refractive index 1.7. By doing so the central bright shifts to original fifth bright fringe from centre. Thickness of glass plate is

 (a) 8 □m
 (b) 6 □m
 (c) 4 □m
 (d) 10 □m
- 132. Two point sources X and Y emit waves of same frequency and speed but Y lags in phase behind X by 2□l radian. If there is a maximum in direction D the distance XO using n as an integer is given by
 - (a) $\frac{\lambda}{2}(n-l)$ (b) $\lambda(n+l)$ (c) $\frac{\lambda}{2}(n+l)$

(d)
$$\lambda(n-l)$$

- 133. A student is asked to measure the wavelength of monochromatic light. He sets up the apparatus sketched below. S_1, S_2, S_3 are narrow parallel slits, *L* is a sodium lamp and *M* is a micrometer eye-piece. The student fails to observe interference fringes. You would advise him to
 - (a) Increase the width of S_1
 - (b) Decrease the distance between S_2 and S_3
 - (c) Replace *L* with a white light source
 - (d) Replace M with a telescope
- 134. A beam with wavelength \Box falls on a stack of partially reflecting planes with separation *d*. The angle \Box that the beam should make with the planes so that the beams reflected from successive planes may interfere constructively is (where n = 1, 2,)

	(a) No change(c) Bands become broader and farther apart	[KCET (Eng./Med.) 2000; BHU 2001] (b) diffraction bands become narrower and crowded together (d) Bands disappear
144	Angular width (\Box) of central maximum of a diffraction pattern on a s	single slit does not depend upon DCF 2000 2001
	(a) Distance between slit and source (b)	Wavelength of light used
	(c) Width of the slit	(d) Frequency of light used
145.	In order to see diffraction the thickness of the film is	(a) 100 Junity of 1900 and 1
	(a) 100 Å (b) 10.000 Å	(c) 1 mm (d) 1 cm
146.	What will be the angle of diffracting for the first minimum due to F and slit of width 0.55 mm	Fraunhoffer diffraction with sources of light of wave length 550 <i>nm</i> [Pb. PMT 2001]
	(a) 0.001 <i>rad</i> (b) 0.01 <i>rad</i>	(c) 1 <i>rad</i> (d) 0.1 <i>rad</i>
147.	The bending of beam of light around corners of obstacles is called	
	(a) D affaction (b) D ifferentian	[NCERT 1990; AFMC 1995; RPET 1997; CPMT 1999; JIPMER 2000]
140	(a) Reflection (b) Diffraction	(c) Kerrachon (d) Interference
148.	Diffraction effects are easier to notice in the case of sound waves that	(h) Sound is persoined by the car
	(a) Sound waves are machanical waves	(d) Sound is perceived by the ear
140	(c) Sound waves are mechanical waves	(d) Sound waves are of longer wavelength on pattern at a single slit is given by (a is the width of the slit)
14).	Direction of the first secondary maximum in the tradinioter diffraction	IKCET 1999
	$a\sin\theta = \frac{\pi}{2}$ $a\cos\theta = \frac{\pi}{2}$	(a) $a\sin\theta = \lambda$ (d) $a\sin\theta = \frac{d}{2}$
	(a) = (b)	(c)
150.	A slit of size 0.15 cm is placed at 2.1 m from a screen. On illuminate pattern will be	ted it by a light of wavelength 5×10°CM. The width of diffraction [RPET 1999]
	(a) /0 mm (b) 0.14 mm	(c) $1.4 \ cm$ (d) $0.14 \ cm$
151.	Yellow light is used in a single slit diffraction experiment with a slip pattern will reveal	it of 0.6 mm. If yellow light is replaced by x-rays, than the observed [IIT-JEE 1999]
	(a) That the central maxima is narrower	(b) More number of fringes
150	(c) Less number of finges	(d) No diffraction pattern
152.	perpendicular to the direction of incident beam. At the first maxim coming from the edges of the slit is	a narrow sit. A diffraction pattern is formed on a screen placed num of the diffraction pattern the phase difference between the rays [IIT-JEE 1995, 98]
	π	
	(a) 0 (b) 2	(c) π (d) 2π
153.	Diffraction and interference of light suggest	[CPMT 1995; RPMT 1998]
	(a) Nature of light is electro-magnetic	(b) Wave nature
	(c) Nature is quantum	(d) Nature of light is transverse
154.	A light wave is incident normally over a slit of width 24×10^{-5} cm. is 30°. What is the wavelength of light	The angular position of second dark fringe from the central maxima [RPET 1995]
	(a) 6000 Å (b) 5000 Å	(c) 3000 Å (d) 1500 Å
155.	A beam of light of wavelength 600 nm from a distant source falls of observed on a screen 2 m away. The distance between the first dark f	on a single slit $1.00 nm$ wide and the resulting diffraction pattern is fringes on either side of the central bright fringe is [IIT-JEE 1994]
156	(a) 1.2 cm (b) 1.2 mm	(c) 2.4 cm (d) 2.4 mm
130.	A parallel beam of monochromatic right of wavelength 5000 A is not is focused by a convex lens on a screen placed on the focal plane. Th $(x) = 0^{\circ}$	the first minimum will be formed for the angle of diffraction equal to [CBSE F (a) 20°
157	(a) 0 (b) 15 Light appears to travel in straight lines since IDDMT 1	(C) 50 (U) 00 1007: AHMS 1008: CPMT 1087 80 00 2001: KCET (Engg.) 2002: BHU 2002
157.	(a) It is not absorbed by the atmosphere	(b) It is reflected by the atmosphere
	(c) It's wavelength is very small	(d) It's velocity is very large
158.	The condition for observing Fraunhofer diffraction from a single slit	is that the light wavefront incident on the slit should be
		[MP PMT 1987]
	(a) Spherical (b) Cylindrical	(c) Plane (d) Elliptical
159.	The position of the direct image obtained at <i>O</i> , when a monochrom normal incidence is shown in fig.	natic beam of light is passed through a plane transmission grating at
		O A B C
	-	

	The different of increase 4 Deca	1 Commence 1 to the first of			41	
	The diffracted images A, B and source of shorter wavelength	C correspond to the first, se	econd and third	order diffraction when	the source is	replaced by an another
	(a) All the four shift in the dir	ection C to O	(b)	All the four will shift in	n the direction	<i>O</i> to <i>C</i>
	(c) The images C , B and A wi	ll shift toward O	(d)	The images C, B and A	will shift awa	y from O
160.	To observe diffraction the size	of an obstacle				[CPMT 1982]
	(a) Should be of the same ord	er as wavelength	(b)	Should be much larger	than the wave	length
				$\frac{\lambda}{\lambda}$		
	(c) Have no relation to wavele	ength	(d)	Should be exactly 2		
161.	The first diffraction minima du	e to a single slit diffraction is	at $\theta = 30^{\circ}$ for	a light of wavelength 50	000 Å. The wi	dth of the slit is
		C		6 6		[CPMT 1985]
	(a) 5×10 ^{−5} cm	(b) 1.0×10 ⁻⁴ cm	(c)	2.5×10 ⁻⁵ cm	(d) 1	.25×10 ⁻⁵ cm
162.	Radio waves diffract pronouced	lly around buildings while lig	ht waves which	are also electromagneti	c waves do no	t because [PPE 1978]
	(a) Wavelength of the radio w	aves is not comparable with t	he size of the o	bstacle		
	(b) Wavelength of radio wave	s is of the order of 200-500 m	hence they ber	nd more than the light wa	aves whose wa	avelength is very small
	(c) Light waves are transverse	whereas radio waves are long	gitudinal			
1(2	(d) None of the above					
163.	One cannot obtain diffraction f	rom a wide slit illuminated by	a monochroma	itic light because		[PPE 1978]
	(a) The half period elements (contained in a wide slit are ver	ry large so the r	esultant effect is general	nination	
	(c) Diffraction patterns are su	perimposed by interference p	attern and hence	and effect is general intu	mination	
	(d) None of these	perimposed by interference pa	attern and heney	the result is general int		
	(u) Hone of these					λ.
164.	In the far field diffraction patte	ern of a single slit under poly	chromatic illum	ination, the first minim	um with the w	vavelength n_1 is found
	to be coincident with the third i	maximum at $^{\lambda_2}$. So				
	(a) $3\lambda_1 = 0.3\lambda_2$	(b) $3\lambda_1 = \lambda_2$	(c)	$\lambda_1 = 3.5\lambda_2$	0 _(d)	$.3\lambda_1 = 3\lambda_2$
165.	In case of Fresnel diffraction				()	
	(a) Both source and screen are	e at finite distance from diffra	cting device			
	(b) Source is at finite distance	while screen at infinity from	diffraction dev	ice		
	(c) Screen is at finite distance	while source at infinity from	diffracting dev	ce		
166	(d) Both source and screen are Light of wavelength $\Box = 5000$	d falls normally on a parrow	iffracting devic	e Jaced at a distance of 1	<i>m</i> from the sl	it and perpendicular to
100.	the direction of light. The first	minima of the diffraction pa	ttern is situated	at 5 mm from the centr	e of central m	aximum. The width of
	the slit is	ľ				
	(a) 0.1 <i>mm</i>	(b) 1.0 <i>mm</i>	(c)	0.5 mm	(d) 0.	2 <i>mm</i>
167.	Light falls normally on a slit o	f width 0.3 mm. A lens of for	cal length 40 cr	<i>n</i> collects the rays at its	focal plane. T	The distance of the first
	(a) 4800 Å	(b) 5000 Å	light is	6000 Å	(d) 59	206 Å
168	A parallel monochromatic hear	n of light is incident at an ang	\Box to the nor	mal of a slit of width e	(u) 50 The central no	int Ω of the screen will
100.	be dark if	n of fight is incluent at an ang		mar of a shit of wrath c.	rne centrar po	int o of the screen win
	$c_{1} = e_{1} = n_{1}$					
	(a) $C S H C = H R Where n = 1$, 3, 5	5			
	(b) $e\sin\theta = n\lambda$ where $n = 1$, 2, 3		0		
	(c) $e\sin\theta = (2n-1)\lambda/2$ where $e\sin\theta = (2n-1)\lambda/2$	here $n = 1, 2, 3$				
	(d) $e \cos \theta = n \pi$ where $n = 1$, 2, 3, 4				
169.	The angle of incidence at which	n reflected light is totally pola	rized for reflect	tion from air to glass (ret	fraction index	<i>n</i>) is [AIEEE 2004]
		$\sin^{-1}\left(\frac{1}{2}\right)$		$\tan^{-1}\left(\frac{1}{2}\right)$		
	(a) sin ⁻¹ (n)	(b) (n)	(c)	(<i>n</i>)	(d) ta	an ⁻¹ (<i>n</i>)
170.	Through which character we ca	n distinguish the light waves	from sound way	ves	jc	CBSE PMT 1990; RPET 2002]
	(a) Interference	(b) Refraction	(c)	Polarisation	(d) R	eflection

171. Which of following can not be polarised[Kerala PMT 2001](a) Radio waves(b) Ultraviolet rays(c) Infrared rays(d) Ultrasonic waves

- A polaroid is placed at 45° to an incoming light of intensity l_0 . Now the intensity of light passing through polaroid after polarisation 172 [CPMT 1995] would be
 - (b) $I_0/2$ (c) $I_0/4$ I_0 (a) (d) Zero

Plane polarised light is passed through a polaroid. On viewing through the polaroid we find that when the polariod is given one complete 173. rotation about the direction of the light, one of the following is observed [MNR 1993]

- (a) The intensity of light gradually decreases to zero and remains at zero
- (b) The intensity of light gradually increases to a maximum and remains at maximum
- (c) There is no change in intensity
- (d) The intensity of light is twice maximum and twice zero
- 174 Out of the following statements which is not correct
 - (a) When unpolarised light passes through a Nicol's prism, the emergent light is elliptically polarised
 - (b) Nicol's prism works on the principle of double refraction and total internal reflection
 - (c) Nicol's prism can be used to produce and analyse polarised light
 - (d) Calcite and Quartz are both doubly refracting crystals
- A ray of light is incident on the surface of a glass plate at an angle of incidence equal to Brewster's angle ϕ If μ 175. represents the refractive index of glass with respect to air, then the angle between reflected and refracted rays is [CPMT 1989]
 - (b) $\sin^{1}(\mu \cos \phi)$ 90+¢ $90^{\circ} - \sin^{-1}(\sin\phi/\mu)$ (c) 90° (d) (a)
- Figure represents a glass plate placed vertically on a horizontal table with a beam of unpolarised light falling on its surface at the 176. polarising angle of 57° with the normal. The electric vector in the reflected light on screen S will vibrate with respect to the plane of incidence in a [CPMT 1988]
 - (a) Vertical plane
 - (b) Horizontal plane
 - (c) Plane making an angle of 45° with the vertical
 - (d) Plane making an angle of 57° with the horizontal
- A beam of light AO is incident on a glass slab $(\mu = 1.54)$ in a direction as shown in figure. The reflected ray OB is passed through a 177. Nicol prism on viewing through a Nicole prism, we find on rotating the prism that [CPMT 1986]
 - (a) The intensity is reduced down to zero and remains zero
 - (b) The intensity reduces down some what and rises again
 - (c) There is no change in intensity
 - (d) The intensity gradually reduces to zero and then again increases
- 178. Polarised glass is used in sun glasses because
 - (a) It reduces the light intensity to half an account of polarisation
 - (c) It has good colour

(a) One dot

181.

- (d) It is cheaper
- 179. In the propagation of electromagnetic waves the angle between the direction of propagation and plane of polarisation is [CPMT 1978] (a) 0° (b) 45° (c) 90°
- 180. The transverse nature of light is shown by
- [CPMT 1972, 74, 78; RPMT 1999; MP PMT 2000; AFMC 2001; AIEEE 2002; MP PET 2004]
- (a) Interference of light (b) Refraction of light (c) Polarisation of light
- (d) Dispersion of light A calcite crystal is placed over a dot on a piece of paper and rotated, on seeing through the calcite one will be see
 - (b) Two stationary dots
 - (d) One dot rotating about the other
- (c) Two rotating dots 182. In a doubly refracting crystal, optic axis is a direction along which
 - (a) A plane polarised beam does not suffer deviation
 - (b) Any beam of light does not suffer any deviation
 - (c) Double refraction does not take place
 - (d) Ordinary and extraordinary rays undergo maximum deviation
- 183 Which is incorrect with reference to polarisation by reflection
 - (a) The degree of polarisation varies with the angle of incidence
 - (b) Percentage of the polarising light in the reflected beam is the greatest at the angle of polarisation
 - (c) Reflected light is plane polarised in the plane of incidence
 - (d) Reflected light is plane polarised in the plane perpendicular to plane of incidence
- Two polarising plates have polarising directions parallel so as to transmit maximum intensity of light. Through what angle must either 184. plate be turned if the intensities of the transmitted beam is to drop by one-third

Wave Motion 32

[CPMT 1991]

(b) It is fashionable

[CPMT 1981]

[CPMT 1971]

- (d) 180°

185.	(a) 55°18' The polaroid is	(b) 144°22'	(c) Both of these	(d) None of these								
	(a) Celluloid film		(b) Big crystal									
101	(c) Cluster of small crystals arra	nged in a regular way	(d) Cluster of small crystals a	stals arranged in a haphazard way								
186.	(a) Fully polarised	(b) Partially polarised	(c) Unpolarised	(d) Can not be said								
187.	The observed wavelength of light	coming from a distant ga	alaxy is found to be increased by 0.5% as co	mpared with that comparing from								
	(a) Stationary with respect to the	e earth		[MP PM I 1993, 2003]								
	(b) Approaching the earth with	velocity of light		* (· · ·								
	(c) Receding from the earth with	n the velocity of light										
	(d) Receding from the earth with	n a velocity equal to $1.5 \times$	10 ⁶ m/s									
188.	In hydrogen spectrum the wavele	ngth of H_{α} line is 656 m	m whereas in the spectrum of a distant galax	H_{α} line wavelength is 706nm.								
100	Estimated speed of the galaxy with	th respect to earth is		[IIT-JEE 1999; UPSEAT 2003]								
	(a) $2 \times 10^8 m/s$	(b) $2 \times 10^7 m/s$	(c) $2 \times 10^6 m/s$	(d) $2 \times 10^5 m/s$								
189.	A star emits light of 5500 Å wave	length. Its appears blue to	an observer on the earth, it means	[DPMT 2002]								
	(a) Star is going away from the	earth (b)	Star is stationary									
	(c) Star is coming towards earth	(d)	None of the above									
190.). The 6563 Å line emitted by hydrogen atom in a star is found to be red shifted by 5 Å. The speed with which the star is receding from t											
	$1720 \times 10^9 m/c$	$120 \times 10^7 m/s$	$3.20 \times 10^5 m/s$	$2.20 \times 10^5 \text{ m/s}$								
	(a) 17.29×10 m/s	(b) 4.29×10 //// 5	(c) 5.53×10 m/s	(d) 2.29×10 m/s								
191.	Three observers A , B and C meas	sure the speed of light con	ning from a source to be V_A , V_B and V_C . T	The observer A moves towards the								
	source, the observer C moves as	vay from the source with	the same speed. The observer B stays stat	ionary. The surrounding space is [Kerala CET (Med.) 2002]								
	$V_{A} \ge V_{B} \ge V_{C}$	$V_{\rm P} \leq V_{\rm P} \leq V_{\rm C}$	$V_A = V_B = V_C$	$V_A = V_D > V_C$								
102	(a) A star amitting light of would	(b) $f_A = f_B = f_C$	(c) A B C	(d) A B C								
192.	A star emitting light of waveler $(C = 3 \times 1)$	lgth 5896 A is moving a $\Omega^8 m/sec$	way from the earth with a speed of 3600	<i>km/sec.</i> The wavelength of light								
	observed on earth will $(C = J \times I)$	(b) Increase by 5066.7	light) 5 Å (a) Decrease by 70.75 Å	[MP PET 1995, 2002] (d) Increase by 70-75 Å								
	(a) Decrease by 5825.25 A	(b) Increase by 5900.7.	$T_{\rm rel} = \frac{10^8 \mathrm{m}}{10^8 \mathrm{m}}$	(u) increase by 70.75 A								
193.	The periodic time of rotation of a 4320 Å the Doppler shift will be	a certain star is 22 days at $(1 \text{ day} = 86400 \text{ sec})$	nd its radius is 7×10 <i>III</i> . If the wavelength	of light emitted by its surface be								
	(a) 0.033 Å	(b) 0.33 Å	(c) $3.3 Å$	(d) 33 Å								
194	A heavenly body is receding from	earth such that the fraction	onal change in λ is 1 then its velocity is	IDCE 20001								
1770	The starten y body is recoming iton	3C	C	2C								
	(a) C	(b) 5	$\frac{\overline{5}}{5}$	$(d) \frac{5}{5}$								
195.	A star is going away from the ear	th. An observer on the ear	th will see the wavelength of light coming fr	The star [MP PMT 1999]								
	(a) Decreased											
	(b) Increased											
	(c) Neither decreased nor increased depe	sed nding upon the velocity of	f the star									
196.	If the shift of wavelength of light	emitted by a star is toward	ds violet, then this shows that star is	[RPET 1996; RPMT 1999]								
	(a) Stationary	(b) Moving towards ea	rth (c) Moving away from earth	(d) Information is								
107	incomplete When the wavelength of light age	ning from a distant star is	mangurad it is found shifted towards and Th	on the conclusion is								
197.	when the wavelength of light cor	ning from a distant star is	measured it is round shifted towards red. In	JIPMER 1999]								
	(a) The star is approaching the c	bserver	(b) The star recedes away from	m earth								
105	(c) There is gravitational effect	on the light	(d) The star remains stationar	y								
198.	In the spectrum of light of a lumin	nous heavenly body the w	avelength of a spectral line is measured to be	e 4/4/ A while actual wavelength								

of the line is 4700 Å. The relative velocity of the heavenly body with respect to earth will be (velocity of light is $3 \times 10^8 m/s$) [MP PET 1997; MP I

		$3 \times 10^5 m/s$									$3 \times 10^5 m/s$ m s m														
	(a) $3 \times 10^{11/3}$ moving towards the earth								(b) $3 \times 10^{11/3}$ moving away from the earth																
	(c)	3×10)°m/s	moving	toward	s the ea	rth				(d)	3×10° <i>r</i>	n/s _{mo}	oving av	way froi	n the ea	rth								
199.	. The	The wavelength of light observed on the earth, from a moving star is for										found to decrease by 0.05%. Relative to the earth the star is													
		$(1.10^{5} m/s)$											[Mr r M1/r E 1 996]												
	(a)	Movin	ig away	with a	velocity	of 1		1/ 5			(b) (Coming	closer v	with a ve	elocity of	of 1.3×	10 ///	5							
	(c)	Movin	ng away	with a	velocity	of 1.5	o×10⁺n	n/s	(d) Coming closer with a velocity of $1.5 \times 10^4 m/s$																
200	. Due	to Dop will be	opler's e	effect, th	ne shift	in wav	elength	observe	ed is 0.1	A for	a star p	oroducin	g wave	length 6	5000 Å.	Veloci	ty of re	cession	of the	1800					
	(a)	2.5 km	n/s			(b) 1	0 <i>km/s</i>				(c) 5	5 km/s			(0	d) 20 k	m/s	, i	CEI I	50]					
201	Δrc	ocket is	going a	way fro	om the i	earth at	a speed	10^6	m/s	If the w	avelen	oth of th	e light	wave ei	nitted h	v it he	5700 Å	what y	vill be						
201	its I	Doppler	's shift	iway iit	Jiii the v	cartii at	a speed	101	•	n the w	averen	gui or u	ic fight	wave ci	intica t	[MP I	PMT 199	, what v 90, 94; F	RPMT 19	96]					
	(a)	200 Å				(b) 1	9 Å				(c) 2	20 Å			(0	d) 0.2	Å								
202	. Arc	ocket is	going a	way fro	om the e	earth at	a speed	0.2 <i>c</i> , v	where c	= speed	d of lig	ht, it em	its a sig	nal of f	requent	ey 4×1	$0^7 Hz$	What v	vill be						
	the frequency observed by an observer on the earth [RPMT 19]														96]										
	(a)	4×10)⁰ Hz			(b) 3	3.3×10	' Hz			(c)	3×10° <i>H</i>	Ηz		((i) 5×	$10^{7} Hz$								
203	. A s	tar mov	es awag	y from	earth at	speed	0.8 c w	hile en	nitting l	ight of	freque	ncy 6×2	$10^{14} H_2$. What	freque	ncy wil	l be ob	served	on the						
	eart	h (in un	its of 1	$0^{14}Hz$	$(c = s_{j})$	peed of	light)											[MP	PMT 19	95]					
	(a)	0.24				(b) 1	.2				(c) 3	30			(d) 3.3									
204	. The	sun is i	rotating	about i	ts own	axis. Tł	ne specti	ral lines	emittee	d from t	the two	ends of	its equ	ator, foi	r an obs	erver or	1 the ear	rth, will I MP	l show PMT 19	941					
	(a)	Shift t	owards	red end														1		1					
	(b) Shift towards violet end																								
	(c)	Shift t	owards	red end	by one	line an	d towar	ds viole	t end by	y other		*													
	(d)	NO SH	π							-	1.08.														
205.	. The	time p	eriod of m the su	f rotatio	on of th	ie sun i n will b	s 25 da	ys and	its radi	us is /	×107	¹¹ . The	Dopple	r shift	for the	light of	wavele	ength 60	000 Å 19MT 19	941					
	(a)	0.04 Å]		i the su	(b) 0	.40 Å				(c) 4	4.00 <i>Å</i>			(0	d) 40.0) Å	[1	11					
206	. The	appare	nt wave	length	of the li	ght from	m a star	moving	g away	from th	e earth	is 0.01	% more	than it	s real w	aveleng	th. The	n the ve	elocity						
	of s	tar is	/			(h) 1	E Inn /a a				(a) 1	50 Inn /			(a) 20 <i>1</i>	/	[0	CPMT 19	79]					
	(a)	60 <i>KM</i>	/sec		•	(0) 1	5 km/se	С			(0)	50 Km/s	ec		((1) <i>30 k</i>	.m/sec								
							\bigcirc																		
20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1						
c	c	a	d	c	b	a	d	c	d	c	b	c	c	a	b	d	c	d	a						
40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21						
b	a	c	c	d	c	b	c	b	b	d	a	d	c	d	a	c	b	b	c						
60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41						
d	a	d	a	b	b	a	c	d	d	a	c	b	a	d	a	c	c	d	c						
80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61						
a	b	d	d	b	c	b	d	b	b, c	a	b	c	b	b	c	c	c	d	c						
100	99	98	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81						
b,a	a 110	D	D	a 11(c	c	c	c	a 111	a 110	D	D	D	a	D	a 10.1	D	a 102	a 101						
120 h	119	118	117	116	115	114 a.d	113	112 b	111	110	109	108	107	106	105	104	103	102	101						
U 140	a 120	D 120	u 127	a 126	C 125	a,a	a 122	122	a 121	a 120	a,c	a,D	a 127	u 126	125	u 124	a 122	с 122	с 121						
140 d	139 d	138 h	13/	130 d	135 d	134	133 h	132 h	131	130	129	120	12/ d	120	125	124	9	9	121						
160	159	158	157	156	155	154	153	152	4 151	4 150	149	148	147	146	a 145	144	a 143	a 142	141						
a	<u>с</u>	<u>с</u>	с.	<u>с</u>	d	<u>я</u>	h	102 C	-101 a	h	d	h	/ b	a 190	h	 a	h	2 a	 C						
180	179	178	177	176	175	174	173	172	171	170	169	168	167	166	165	164	163	162	161						

Wave Motion 35

c	a	a	d	a	c	a	d	b	d	c	d	b	c	a	a	c	a	b	b
200	199	198	197	196	195	194	193	192	191	190	189	188	187	186	185	184	183	182	181
c	b	d	b	b	b	a	a	d	c	d	c	b	d	d	c	c	c	c	d
														206	205	204	203	202	201
														d	a	c	b	b	b